Modeling in Fluid Mechanics

Modeling in Fluid Mechanics

Author: Igor Gaissinski

Publisher: CRC Press

Published: 2018-06-13

Total Pages: 658

ISBN-13: 1351029045

DOWNLOAD EBOOK

This volume is dedicated to modeling in fluid mechanics and is divided into four chapters, which contain a significant number of useful exercises with solutions. The authors provide relatively complete references on relevant topics in the bibliography at the end of each chapter.


Numerical Simulation in Fluid Dynamics

Numerical Simulation in Fluid Dynamics

Author: Michael Griebel

Publisher: SIAM

Published: 1998-01-01

Total Pages: 222

ISBN-13: 0898713986

DOWNLOAD EBOOK

In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.


Modelling Fluid Flow

Modelling Fluid Flow

Author: János Vad

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 424

ISBN-13: 3662087979

DOWNLOAD EBOOK

Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.


Interfacial Fluid Mechanics

Interfacial Fluid Mechanics

Author: Vladimir S. Ajaev

Publisher: Springer Science & Business Media

Published: 2012-02-07

Total Pages: 219

ISBN-13: 1461413419

DOWNLOAD EBOOK

Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then, several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces,evaporation/condensation, and surfactant phenomena are discussed in the later chapters.


Modeling and Analysis of Modern Fluid Problems

Modeling and Analysis of Modern Fluid Problems

Author: Liancun Zheng

Publisher: Academic Press

Published: 2017-04-26

Total Pages: 482

ISBN-13: 0128117591

DOWNLOAD EBOOK

Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and 'exact' solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. - Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems - Includes novel developments in fractional order differential equations with fractal theory applied to fluids - Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis


Computational Modeling for Fluid Flow and Interfacial Transport

Computational Modeling for Fluid Flow and Interfacial Transport

Author: Wei Shyy

Publisher: Courier Corporation

Published: 2014-06-10

Total Pages: 529

ISBN-13: 0486150011

DOWNLOAD EBOOK

Practical applications and examples highlight this treatment of computational modeling for handling complex flowfields. A reference for researchers and graduate students of many different backgrounds, it also functions as a text for learning essential computation elements. Drawing upon his own research, the author addresses both macroscopic and microscopic features. He begins his three-part treatment with a survey of the basic concepts of finite difference schemes for solving parabolic, elliptic, and hyperbolic partial differential equations. The second part concerns issues related to computational modeling for fluid flow and transport phenomena. In addition to a focus on pressure-based methods, this section also discusses practical engineering applications. The third and final part explores the transport processes involving interfacial dynamics, particularly those influenced by phase change, gravity, and capillarity. Case studies, employing previously discussed methods, demonstrate the interplay between the fluid and thermal transport at macroscopic scales and their interaction with the interfacial transport.


Tracer Technology

Tracer Technology

Author: Octave Levenspiel

Publisher: Springer Science & Business Media

Published: 2011-11-18

Total Pages: 153

ISBN-13: 1441980741

DOWNLOAD EBOOK

The tracer method was first introduced to measure the actual flow of fluid in a vessel, and then to develop a suitable model to represent this flow. Such models are used to follow the flow of fluid in chemical reactors and other process units, in rivers and streams, and through soils and porous structures. Also, in medicine they are used to study the flow of chemicals, harmful or not, in the blood streams of animals and man. Tracer Technology, written by Octave Levenspiel, shows how we use tracers to follow the flow of fluids and then we develop a variety of models to represent these flows. This activity is called tracer technology.


Complex fluids

Complex fluids

Author: Pierre Saramito

Publisher: Springer

Published: 2016-10-26

Total Pages: 287

ISBN-13: 3319443623

DOWNLOAD EBOOK

This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.


Variational Models and Methods in Solid and Fluid Mechanics

Variational Models and Methods in Solid and Fluid Mechanics

Author: Francesco dell'Isola

Publisher: Springer Science & Business Media

Published: 2012-01-15

Total Pages: 363

ISBN-13: 3709109833

DOWNLOAD EBOOK

F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.


Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Author: Laura De Lorenzis

Publisher: Springer Nature

Published: 2020-02-08

Total Pages: 225

ISBN-13: 3030375188

DOWNLOAD EBOOK

The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.