Offering a cross-country examination and comparison of drought awareness and experience, this book shows how scientists, water managers, and policy makers approach drought and water scarcity in arid and semi-arid regions of Spain, Mexico, Australia, South Africa and the United States.
Many challenges, including climate change, face the Nation¿s water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. Charts and tables.
Since the beginning of man's existence on Earth, the adequacy of available water has been as important as any other factor for man's survival and prosperity. The volume comprises comprehensive reviews on: Paleoenvironments of arid land, climate-water-man interactions, water resources in the Minoan era, ancient Greek examples of avoiding water shortages, climatic changes in the eastern Mediterranean region since 5000 B.C., climatic evolution in ancient civilizations based on fossil studies, impact of climatic changes on groundwater and Mediterranean wetlands. The book is written for civil and agricultural engineers, hydrologists, geologists, environmental scientists and researchers. It is also useful as a reference to consulting engineers, agriculturists, environmentalists and students.
This text is the first international and comprehensive discussion of the impacts of climatic fluctuations and climate change on water resources management. The book presents an overview of the impacts of climatic change/fluctuations on a wide variety of water resources sectors including river runoff, water quality, water temperature, water use and demand, reservoir management and water resource planning and management. The book is unique in that it then presents a series of case studies to both demonstrate the application of climate change impact assessment methodologies and to provide insights to catchment, river basin, and national scale impacts of climate change/fluctuations on the water resources of Africa, Europe, and North America. Audience: Researchers, scholars and students of hydrology and water management who are concerned with the issues of climate change as well as the climate change impact assessment community.
Methods and guidelines for developing and using mathematical models Turn to Effective Groundwater Model Calibration for a set of methods and guidelines that can help produce more accurate and transparent mathematical models. The models can represent groundwater flow and transport and other natural and engineered systems. Use this book and its extensive exercises to learn methods to fully exploit the data on hand, maximize the model's potential, and troubleshoot any problems that arise. Use the methods to perform: Sensitivity analysis to evaluate the information content of data Data assessment to identify (a) existing measurements that dominate model development and predictions and (b) potential measurements likely to improve the reliability of predictions Calibration to develop models that are consistent with the data in an optimal manner Uncertainty evaluation to quantify and communicate errors in simulated results that are often used to make important societal decisions Most of the methods are based on linear and nonlinear regression theory. Fourteen guidelines show the reader how to use the methods advantageously in practical situations. Exercises focus on a groundwater flow system and management problem, enabling readers to apply all the methods presented in the text. The exercises can be completed using the material provided in the book, or as hands-on computer exercises using instructions and files available on the text's accompanying Web site. Throughout the book, the authors stress the need for valid statistical concepts and easily understood presentation methods required to achieve well-tested, transparent models. Most of the examples and all of the exercises focus on simulating groundwater systems; other examples come from surface-water hydrology and geophysics. The methods and guidelines in the text are broadly applicable and can be used by students, researchers, and engineers to simulate many kinds systems.
While most books examine only the classical aspects of hydrology, this three-volume set covers multiple aspects of hydrology, and includes contributions from experts from more than 30 countries. It examines new approaches, addresses growing concerns about hydrological and ecological connectivity, and considers the worldwide impact of climate change
This volume arises from the work of the International Geographical Union Working Group on Regional Hydrological Response to Climate Change and Global Warming under the chairmanship of Professor Changming Liu (1992-96). The book consists mostly of peer-reviewed papers delivered at the Working Group's first three scientific meetings held in Washington, D.C. (1992), Lhasa, Tibet (1993) and Moscow (1995). These have been supplemented by a few additional chapters that have been specifically commissioned in order to give a well-rounded coverage of the global and scientific aspects of the topic. As editors, we have sought to balance state-of-the-art reviews of methodology and regional research with detailed studies of specific countries and river basins. In the spirit of the IGU, we have devoted particular effort to encouraging contributions from scientists in the non-English-speaking world. These chapters provide valuable evidence of recent climatic change and predictions of future hydrological impacts from parts of the world where little detailed work has been conducted hitherto. They provide much valuable information that is new and interesting to an international audience and is otherwise very difficult or impossible to acquire. It is hoped that the present volume will be not only a record of current achievements, but also a stimulus to further hydrological research as the detail and spatial resolution of Global Climate Models improves. One notable aspect that emerges from a number of the contributions is that many, though by no means all, recent hydrological trends are in line with global warming predictions.
This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.