Optimization Methods in Metabolic Networks

Optimization Methods in Metabolic Networks

Author: Costas D. Maranas

Publisher: John Wiley & Sons

Published: 2016-02-23

Total Pages: 278

ISBN-13: 1119028493

DOWNLOAD EBOOK

Provides a tutorial on the computational tools that use mathematical optimization concepts and representations for the curation, analysis and redesign of metabolic networks Organizes, for the first time, the fundamentals of mathematical optimization in the context of metabolic network analysis Reviews the fundamentals of different classes of optimization problems including LP, MILP, MLP and MINLP Explains the most efficient ways of formulating a biological problem using mathematical optimization Reviews a variety of relevant problems in metabolic network curation, analysis and redesign with an emphasis on details of optimization formulations Provides a detailed treatment of bilevel optimization techniques for computational strain design and other relevant problems


Modelling Metabolism with Mathematica

Modelling Metabolism with Mathematica

Author: Peter Mulquiney

Publisher: CRC Press

Published: 2003-05-14

Total Pages: 327

ISBN-13: 0203503937

DOWNLOAD EBOOK

With the advent of sophisticated general programming environments like Mathematica, the task of developing new models of metabolism and visualizing their responses has become accessible to students of biochemistry and the life sciences in general. Modelling Metabolism with Mathematica presents the approaches, methods, tools, and algorithms for mode


Current Challenges in Modeling Cellular Metabolism

Current Challenges in Modeling Cellular Metabolism

Author: Daniel Machado

Publisher: Frontiers Media SA

Published: 2016-01-21

Total Pages: 117

ISBN-13: 2889197549

DOWNLOAD EBOOK

Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results.


Predicting Enzyme Targets for Optimization of Metabolic Networks Under Uncertainty

Predicting Enzyme Targets for Optimization of Metabolic Networks Under Uncertainty

Author: David Christopher Flowers

Publisher:

Published: 2012

Total Pages: 105

ISBN-13:

DOWNLOAD EBOOK

Recently, ensemble modeling was applied to metabolic networks for the sake of predicting the effects of genetic manipulations on the observed phenotype of the system. The ensemble of models is generated from experimental wild-type flux data and screened using phenotypic data from gene overexpression and knockout experiments, leaving predictive models. The need for data from multiple genetic perturbation experiments is an inherent limitation to this approach. In this investigation, ensemble modeling is used alongside elementary mode analysis to attempt to predict those enzymatic perturbations that are most likely to result in an increase in a target yield and a target flux when only the wild-type flux distribution is known. Elementary mode analysis indicates the maximum theoretical yield and its associated steady-state flux distribution(s), and the minimal cut set knockouts are determined that eliminate all but the highest-yield elementary modes. These knockouts and other perturbations are simulated using all of the ensemble models, and the distributions of predicted fluxes and yields over the models are compared to elucidate which reactions and metabolites most likely limit the target yield and flux. Additionally, a systematic method is developed to simultaneously identify multiple reactions that are responsible for bottlenecks after the minimal cut set knockouts are performed. These methods are applied to a metabolic network that models 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) production in E. coli. Results show that pyruvate accumulation due to glucose uptake and erythrose-4-phosphate (E4P) shortages resulting from the slow reaction rate of transketolase (Tkt) limit DAHP production. These results are consistent with published data, indicating that a detailed understanding of metabolic networks can be obtained with minimal experimental data. Additionally, the systematic method identifies four enzymes (Tkt, Tal, Pps, and AroG) that, when overexpressed experimentally, increase yield to nearly the maximum theoretical limit. Systematic analysis of a toy network also correctly identifies the post-MCS overexpression that results in the largest increases in yield and absolute fluxes. These results indicates that wild-type steady-state flux data can be used to accurately identify enzyme perturbation targets for increasing yield and target flux values.


Systems Metabolic Engineering

Systems Metabolic Engineering

Author: Christoph Wittmann

Publisher: Springer Science & Business Media

Published: 2012-06-15

Total Pages: 391

ISBN-13: 9400745346

DOWNLOAD EBOOK

Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.


Biological Reaction Engineering

Biological Reaction Engineering

Author: Elmar Heinzle

Publisher: John Wiley & Sons

Published: 2021-07-06

Total Pages: 62

ISBN-13: 3527325247

DOWNLOAD EBOOK

This practical book presents the modeling of dynamic biological engineering processes in a readily comprehensible manner, using the unique combination of simplified fundamental theory and direct hands-on computer simulation. The mathematics is kept to a minimum, and yet the 60 examples illustrate almost every aspect of biological engineering science, with each one described in detail, including the model equations. The programs are written in the modern user-friendly simulation language Berkeley Madonna, which can be run on both Windows PC and Power-Macintosh computers. Madonna solves models comprising many ordinary differential equations using very simple programming, including arrays. It is so powerful that the model parameters may be defined as "sliders", which allow the effect of their change on the model behavior to be seen almost immediately. Data may be included for curve fitting, and sensitivity or multiple runs may be performed. The results can be viewed simultaneously on multiple-graph windows or by using overlays. The examples can be varied to fit any real situation, and the suggested exercises provide practical guidance. The extensive teaching experience of the authors is reflected in this well-balanced presentation, which is suitable for the teacher, student, biochemist or the engineer.


Comprehensive Foodomics

Comprehensive Foodomics

Author:

Publisher: Elsevier

Published: 2020-11-12

Total Pages: 2444

ISBN-13: 0128163968

DOWNLOAD EBOOK

Comprehensive Foodomics, Three Volume Set offers a definitive collection of over 150 articles that provide researchers with innovative answers to crucial questions relating to food quality, safety and its vital and complex links to our health. Topics covered include transcriptomics, proteomics, metabolomics, genomics, green foodomics, epigenetics and noncoding RNA, food safety, food bioactivity and health, food quality and traceability, data treatment and systems biology. Logically structured into 10 focused sections, each article is authored by world leading scientists who cover the whole breadth of Omics and related technologies, including the latest advances and applications. By bringing all this information together in an easily navigable reference, food scientists and nutritionists in both academia and industry will find it the perfect, modern day compendium for frequent reference. List of sections and Section Editors: Genomics - Olivia McAuliffe, Dept of Food Biosciences, Moorepark, Fermoy, Co. Cork, Ireland Epigenetics & Noncoding RNA - Juan Cui, Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE Transcriptomics - Robert Henry, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia Proteomics - Jens Brockmeyer, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Germany Metabolomics - Philippe Schmitt-Kopplin, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany Omics data treatment, System Biology and Foodomics - Carlos Leon Canseco, Visiting Professor, Biomedical Engineering, Universidad Carlos III de Madrid Green Foodomics - Elena Ibanez, Foodomics Lab, CIAL, CSIC, Madrid, Spain Food safety and Foodomics - Djuro Josic, Professor Medicine (Research) Warren Alpert Medical School, Brown University, Providence, RI, USA & Sandra Kraljevic Pavelic, University of Rijeka, Department of Biotechnology, Rijeka, Croatia Food Quality, Traceability and Foodomics - Daniel Cozzolino, Centre for Nutrition and Food Sciences, The University of Queensland, Queensland, Australia Food Bioactivity, Health and Foodomics - Miguel Herrero, Department of Bioactivity and Food Analysis, Foodomics Lab, CIAL, CSIC, Madrid, Spain Brings all relevant foodomics information together in one place, offering readers a ‘one-stop,’ comprehensive resource for access to a wealth of information Includes articles written by academics and practitioners from various fields and regions Provides an ideal resource for students, researchers and professionals who need to find relevant information quickly and easily Includes content from high quality authors from across the globe