Introduction to Transportation Analysis, Modeling and Simulation

Introduction to Transportation Analysis, Modeling and Simulation

Author: Dietmar P.F. Möller

Publisher: Springer

Published: 2014-10-13

Total Pages: 356

ISBN-13: 1447156374

DOWNLOAD EBOOK

This comprehensive textbook/reference provides an in-depth overview of the key aspects of transportation analysis, with an emphasis on modeling real transportation systems and executing the models. Topics and features: presents comprehensive review questions at the end of each chapter, together with detailed case studies, useful links, references and suggestions for further reading; supplies a variety of teaching support materials at the book’s webpage on Springer.com, including a complete set of lecture slides; examines the classification of models used for multimodal transportation systems, and reviews the models and evaluation methods used in transportation planning; explains traffic assignment to road networks, and describes computer simulation integration platforms and their use in the transportation systems sector; provides an overview of transportation simulation tools, and discusses the critical issues in the design, development and use of the simulation models.


Modelling Intelligent Multi-Modal Transit Systems

Modelling Intelligent Multi-Modal Transit Systems

Author: Agostino Nuzzolo

Publisher: CRC Press

Published: 2017-02-17

Total Pages: 229

ISBN-13: 1315351986

DOWNLOAD EBOOK

The growing mobility needs of travellers have led to the development of increasingly complex and integrated multi-modal transit networks. Hence, transport agencies and transit operators are now more urgently required to assist in the challenging task of effectively and efficiently planning, managing, and governing transit networks. A pre-condition for the development of an effective intelligent multi-modal transit system is the integration of information and communication technology (ICT) tools that will support the needs of transit operators and travellers. To achieve this, reliable real-time simulation and short-term forecasting of passenger demand and service network conditions are required to provide both real-time traveller information and successfully synchronise transit service planning and operations control. Modelling Intelligent Multi-Modal Transit Systems introduces the current trends in this newly emerging area. Recent developments in information technology and telematics have enabled a large amount of data to become available, thus further attracting transport researchers to set up new models outside the context of the traditional data-driven approach. The alternative demand-supply interaction or network assignment modelling approach has improved greatly in recent years and has a crucial role to play in this new context.


Multimodal Transport Systems

Multimodal Transport Systems

Author: Slim Hammadi

Publisher: John Wiley & Sons

Published: 2013-12-11

Total Pages: 231

ISBN-13: 1118577256

DOWNLOAD EBOOK

The use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system. Contents 1. Dynamic Car-pooling, Slim Hammadi and Nawel Zangar. 2. Simulation of Urban Transport Systems, Christian Tahon, Thérèse Bonte and Alain Gibaud. 3. Real-time Fleet Management: Typology and Methods, Frédéric Semet and Gilles Goncalves. 4. Solving the Problem of Dynamic Routes by Particle Swarm, Mostefa Redouane Khouahjia, Laetitia Jourdan and El Ghazali Talbi. 5. Optimization of Traffic at a Railway Junction: Scheduling Approaches Based on Timed Petri Nets, Thomas Bourdeaud’huy and Benoît Trouillet. About the Authors Slim Hammadi is Full Professor at the Ecole Centrale de Lille in France, and Director of the LAGIS Team on Optimization of Logistic systems. He is an IEEE Senior Member and specializes in distributed optimization, multi-agent systems, supply chain management and metaheuristics. Mekki Ksouri is Professor and Head of the Systems Analysis, Conception and Control Laboratory at Tunis El Manar University, National Engineering School of Tunis (ENIT) in Tunisia. He is an IEEE Senior Member and specializes in control systems, nonlinear systems, adaptive control and optimization. The multimodal transport network customers need to be oriented during their travels. A multimodal information system (MIS) can provide customers with a travel support tool, allowing them to express their demands and providing them with the appropriate responses in order to improve their travel conditions. This book develops methodologies in order to realize a MIS tool capable of ensuring the availability of permanent multimodal information for customers before and while traveling, considering passengers mobility.


Modeling Dynamic Transportation Networks

Modeling Dynamic Transportation Networks

Author: Bin Ran

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 365

ISBN-13: 3642802303

DOWNLOAD EBOOK

This book seeks to summarize our recent progress in dynamic trans portation network modeling. It concentrates on ideal dynamic network models based on actual travel times and their corresponding solution algorithms. In contrast, our first book DynamIc Urban Transportation Network Models - The ory and Implications for Intelligent Vehicle-Hzghway Systems (Springer-Verlag, 1994) focused on instantaneous dynamic network models. Comparing the two books, the major differences can be summarized as follows: 1. This book uses the variational inequality problem as the basic formulation approach and considers the optimal control problem as a subproblem for solution purposes. The former book used optimal control theory as the basic formulation approach, which caused critical problems in some circumstances. 2. This book focuses on ideal dynamic network models based on actual travel times. The former book focused on instantaneous dynamic network models based on currently prevailing travel times. 3. This book formulates a stochastic dynamic route choice model which can utilize any possible route choice distribution function instead of only the logit function. 4. This book reformulates the bilevel problem of combined departure time/ route choice as a one-level variational inequality. 5. Finally, a set of problems is provided for classroom use. In addition, this book offers comprehensive insights into the complexity and challenge of applying these dynamic network models to Intelligent Trans portation Systems (ITS). Nevertheless, the models in this text are not yet fully evaluated and are subject to revision based on future research.


Schedule-Based Modeling of Transportation Networks

Schedule-Based Modeling of Transportation Networks

Author: Nigel H. M. Wilson

Publisher: Springer Science & Business Media

Published: 2008-10-22

Total Pages: 319

ISBN-13: 0387848126

DOWNLOAD EBOOK

"Schedule-Based Modeling of Transportation Networks: Theory and Applications" follows the book Schedule-Based Dynamic Transit Modeling, published in this series in 2004, recognizing the critical role that schedules play in transportation systems. Conceived for the simulation of transit systems, in the last few years the schedule-based approach has been expanded and applied to operational planning of other transportation schedule services besides mass transit, e.g. freight transport. This innovative approach allows forecasting the evolution over time of the on-board loads on the services and their time-varying performance, using credible user behavioral hypotheses. It opens new frontiers in transportation modeling to support network design, timetable setting, and investigation of congestion effects, as well as the assessment of such new technologies, such as users system information (ITS technologies).


Dynamic Urban Transportation Network Models

Dynamic Urban Transportation Network Models

Author: Bin Ran

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 395

ISBN-13: 3662007738

DOWNLOAD EBOOK

Intelligent Vehicle-Highway Systems are providing a welcome stimulus to research on dynamic urban transportation network models. This book presents a new generation of models for solving dynamic travel choice problems including traveler's destination choice, mode choice, departure/arrival time choice and route choice. These models are expected to function as off-line travel forecasting and evaluation tools, and eventually as on-line prediction and control models in advanced traveler information and traffic management systems. In addition to a rich set of new formulations and solution algorithms, the book provides a summary of the necessary mathematical background and concludes with a discussion of the requirements for model implementation.


Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems

Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems

Author: Guido Gentile

Publisher: Springer

Published: 2016-02-03

Total Pages: 671

ISBN-13: 3319250825

DOWNLOAD EBOOK

This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond “traditional” models, it describes more evolved variants that can reproduce:• intermodal networks with high- and low-frequency services;• realistic behavioural hypotheses underpinning route choice;• time dependency in frequency-based models; and• assumptions about the knowledge that users have of network conditionsthat are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practitioners and public transport operators who need to model and manage transit systems; for example, the role of ITS is explained with regard to their potential in data collection for modelling purposes and validation techniques, as well as with regard to the additional data on network patronage and passengers’ preferences that influences the network-management and control strategies implemented. In addition, it explains how the different aspects of network operations can be incorporated in traditional models and identifies the advantages and disadvantages of doing so. Lastly, the book provides practical information on state-of-the-art implementations of the different models and the commercial packages that are currently available for transit modelling. Showcasing original work done under the aegis of the COST Action TU1004 (TransITS), the book provides a broad readership, ranging from Master and PhD students to researchers and from policy makers to practitioners, with a comprehensive tool for understanding transit assignment models.


Urban Informatics

Urban Informatics

Author: Wenzhong Shi

Publisher: Springer Nature

Published: 2021-04-06

Total Pages: 941

ISBN-13: 9811589836

DOWNLOAD EBOOK

This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.