Modeling, Analysis, Design, and Control of Stochastic Systems

Modeling, Analysis, Design, and Control of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2014-01-13

Total Pages: 381

ISBN-13: 1475730985

DOWNLOAD EBOOK

An introductory level text on stochastic modelling, suited for undergraduates or graduates in actuarial science, business management, computer science, engineering, operations research, public policy, statistics, and mathematics. It employs a large number of examples to show how to build stochastic models of physical systems, analyse these models to predict their performance, and use the analysis to design and control them. The book provides a self-contained review of the relevant topics in probability theory: In discrete and continuous time Markov models it covers the transient and long term behaviour, cost models, and first passage times; under generalised Markov models, it covers renewal processes, cumulative processes and semi-Markov processes. All the material is illustrated with many examples, and the book emphasises numerical answers to the problems. A software package called MAXIM, which runs on MATLAB, is available for downloading.


Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2012-12-27

Total Pages: 313

ISBN-13: 9781461427353

DOWNLOAD EBOOK

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.


Applied Stochastic Processes and Control for Jump-Diffusions

Applied Stochastic Processes and Control for Jump-Diffusions

Author: Floyd B. Hanson

Publisher: SIAM

Published: 2007-01-01

Total Pages: 472

ISBN-13: 9780898718638

DOWNLOAD EBOOK

This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.


Stochastic Systems

Stochastic Systems

Author: P. R. Kumar

Publisher: SIAM

Published: 2015-12-15

Total Pages: 371

ISBN-13: 1611974259

DOWNLOAD EBOOK

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.


Discrete-time Stochastic Systems

Discrete-time Stochastic Systems

Author: Torsten Söderström

Publisher: Springer Science & Business Media

Published: 2002-07-26

Total Pages: 410

ISBN-13: 9781852336493

DOWNLOAD EBOOK

This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.


Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2010-11-03

Total Pages: 323

ISBN-13: 1441917721

DOWNLOAD EBOOK

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.


Modeling, Analysis, Design, and Control of Stochastic Systems

Modeling, Analysis, Design, and Control of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2012-02-10

Total Pages: 375

ISBN-13: 9781441931542

DOWNLOAD EBOOK

An introductory level text on stochastic modelling, suited for undergraduates or graduates in actuarial science, business management, computer science, engineering, operations research, public policy, statistics, and mathematics. It employs a large number of examples to show how to build stochastic models of physical systems, analyse these models to predict their performance, and use the analysis to design and control them. The book provides a self-contained review of the relevant topics in probability theory: In discrete and continuous time Markov models it covers the transient and long term behaviour, cost models, and first passage times; under generalised Markov models, it covers renewal processes, cumulative processes and semi-Markov processes. All the material is illustrated with many examples, and the book emphasises numerical answers to the problems. A software package called MAXIM, which runs on MATLAB, is available for downloading.


Stochastic Discrete Event Systems

Stochastic Discrete Event Systems

Author: Armin Zimmermann

Publisher: Springer Science & Business Media

Published: 2008-01-12

Total Pages: 393

ISBN-13: 3540741739

DOWNLOAD EBOOK

Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.


Stochastic Switching Systems

Stochastic Switching Systems

Author: El-Kébir Boukas

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 426

ISBN-13: 9780817637828

DOWNLOAD EBOOK

An introductory chapter highlights basics concepts and practical models, which are then used to solve more advanced problems throughout the book. Included are many numerical examples and LMI synthesis methods and design approaches.