Model Theory of Fields

Model Theory of Fields

Author: David Marker

Publisher: CRC Press

Published: 2005-12-15

Total Pages: 172

ISBN-13: 1439864411

DOWNLOAD EBOOK

The model theory of fields is a fascinating subject stretching from Tarski's work on the decidability of the theories of the real and complex fields to Hrushovksi's recent proof of the Mordell-Lang conjecture for function fields. This volume provides an insightful introduction to this active area, concentrating on connections to stability theory.


Model Theory of Fields

Model Theory of Fields

Author: David Marker

Publisher: Cambridge University Press

Published: 2017-03-02

Total Pages: 166

ISBN-13: 1316739325

DOWNLOAD EBOOK

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fifth publication in the Lecture Notes in Logic series, the authors give an insightful introduction to the fascinating subject of the model theory of fields, concentrating on its connections to stability theory. In the first two chapters David Marker gives an overview of the model theory of algebraically closed, real closed and differential fields. In the third chapter Anand Pillay gives a proof that there are 2א non-isomorphic countable differential closed fields. Finally, Margit Messmer gives a survey of the model theory of separably closed fields of characteristic p > 0.


Valued Fields

Valued Fields

Author: Antonio J. Engler

Publisher: Springer Science & Business Media

Published: 2005-12-28

Total Pages: 210

ISBN-13: 354030035X

DOWNLOAD EBOOK

Absolute values and their completions – such as the p-adic number fields – play an important role in number theory. Krull's generalization of absolute values to valuations made possible applications in other branches of mathematics. In valuation theory, the notion of completion must be replaced by that of "Henselization". This book develops the theory of valuations as well as of Henselizations, based on the skills of a standard graduate course in algebra.


Model Theory : An Introduction

Model Theory : An Introduction

Author: David Marker

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 342

ISBN-13: 0387227342

DOWNLOAD EBOOK

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures


A Theory of Fields

A Theory of Fields

Author: Neil Fligstein

Publisher: Oxford University Press

Published: 2015

Total Pages: 253

ISBN-13: 0190241454

DOWNLOAD EBOOK

In recent years there has been an outpouring of work at the intersection of social movement thoery, organizational theory, economic, and political sociology. The problems at the core of these areas, Fligstein and McAdam argue, have a similar analytic and theoretical structure. Synthesizing much of this work, A Theory of Fields offers a general perspective on how to understand the problems related to understanding change and instability in modern, complex societies through a theory of strategic action fields.


Model Theory and Algebraic Geometry

Model Theory and Algebraic Geometry

Author: Elisabeth Bouscaren

Publisher: Springer

Published: 2009-03-14

Total Pages: 223

ISBN-13: 3540685219

DOWNLOAD EBOOK

This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.


An Invitation to Model Theory

An Invitation to Model Theory

Author: Jonathan Kirby

Publisher: Cambridge University Press

Published: 2019-04-18

Total Pages: 197

ISBN-13: 1316732398

DOWNLOAD EBOOK

Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.


Model Theory, Algebra, and Geometry

Model Theory, Algebra, and Geometry

Author: Deirdre Haskell

Publisher: Cambridge University Press

Published: 2000-07-03

Total Pages: 244

ISBN-13: 9780521780681

DOWNLOAD EBOOK

Leading experts survey the connections between model theory and semialgebraic, subanalytic, p-adic, rigid and diophantine geometry.


Asymptotic Differential Algebra and Model Theory of Transseries

Asymptotic Differential Algebra and Model Theory of Transseries

Author: Matthias Aschenbrenner

Publisher: Princeton University Press

Published: 2017-06-06

Total Pages: 873

ISBN-13: 0691175438

DOWNLOAD EBOOK

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.


Model Theory

Model Theory

Author: C.C. Chang

Publisher: Courier Corporation

Published: 2013-10-03

Total Pages: 674

ISBN-13: 0486310957

DOWNLOAD EBOOK

This bestselling textbook for higher-level courses was extensively revised in 1990 to accommodate developments in model theoretic methods. Topics include models constructed from constants, ultraproducts, and saturated and special models. 1990 edition.