Spacecraft Formation Flying

Spacecraft Formation Flying

Author: Kyle Alfriend

Publisher: Elsevier

Published: 2009-11-16

Total Pages: 403

ISBN-13: 0080559654

DOWNLOAD EBOOK

Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Software-Enabled Control

Software-Enabled Control

Author: Tariq Samad

Publisher: John Wiley & Sons

Published: 2003-05-01

Total Pages: 448

ISBN-13: 9780471234364

DOWNLOAD EBOOK

Discusses open systems, object orientation, software agents, domain-specific languages, component architectures, as well as the dramatic IT-enabled improvements in memory, communication, and processing resources that are now available for sophisticated control algorithms to exploit. Useful for practitioners and researchers in the fields of real-time systems, aerospace engineering, embedded systems, and artificial intelligence.


Cooperative Control: Models, Applications and Algorithms

Cooperative Control: Models, Applications and Algorithms

Author: Sergiy Butenko

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 365

ISBN-13: 1475737580

DOWNLOAD EBOOK

During the last decades, considerable progress has been observed in all aspects regarding the study of cooperative systems including modeling of cooperative systems, resource allocation, discrete event driven dynamical control, continuous and hybrid dynamical control, and theory of the interaction of information, control, and hierarchy. Solution methods have been proposed using control and optimization approaches, emergent rule based techniques, game theoretic and team theoretic approaches. Measures of performance have been suggested that include the effects of hierarchies and information structures on solutions, performance bounds, concepts of convergence and stability, and problem complexity. These and other topics were discusses at the Second Annual Conference on Cooperative Control and Optimization in Gainesville, Florida. Refereed papers written by selected conference participants from the conference are gathered in this volume, which presents problem models, theoretical results, and algorithms for various aspects of cooperative control. Audience: The book is addressed to faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.


Robust Flight Control

Robust Flight Control

Author: Jean-Francois Magni

Publisher: Springer

Published: 1997-03-07

Total Pages: 670

ISBN-13:

DOWNLOAD EBOOK

In October 1994, 22 organisations throughout Europe accepted a challenge to solve a specific robust flight control design problem. The results of that design challenge, presented at the GARTEUR Specialists' Workshop in Toulouse, France in April 1997, are reported here. Two flight control benchmarks are considered, based on the automatic landing phase of a large cargo aircraft and on the control of a military aircraft. Methods applied include: classical control; multi-objective optimisation; eigenstructure assignment; modal multi-model approach; LQ, Lyapunov and H¿-techniques; ¿-synthesis; nonlinear dynamic inversion; robust inverse dynamics estimation; model predictive control and following; and fuzzy control. Involved in the definition of the benchmarks and the evaluation process have been representatives from the European aeronautical industry, bringing a strong link with flight control law design practice.


Model Predictive Control for Ascent Load Management of a Reusable Launch Vehicle

Model Predictive Control for Ascent Load Management of a Reusable Launch Vehicle

Author: Andrew Allen Martin

Publisher:

Published: 2002-06-01

Total Pages: 190

ISBN-13: 9781423509189

DOWNLOAD EBOOK

During the boost phase of ascent, winds have a significant impact on a launch vehicle's angle of attack, and can induce large structural loads on the vehicle. Traditional methods for mitigating these loads involve measuring the winds prior to launch and designing trajectories to minimize the vehicle angle of attack (0). The current balloon-based method of collecting wind field information produces wind profiles with significant uncertainty due to the inherent time delays associated with balloon measurement procedures. Managing the mission risk caused by these uncertain wind measurements has always been important to control system designers. This thesis will describe a novel approach to managing structural loads through the combination of a Light Detection and Ranging (LIDAR) wind sensor, and Model Predictive Control (MPC). LIDAR wind sensors can provide near real-time wind measurements, significantly reducing wind uncertainty at launch. MPC takes full advantage of this current wind information through a unique combination of proactive control, con-traint integration and tuning flexibility. This thesis describes the development of two types of MPC controllers, as well as a baseline controller representative of current control methods used by industry. A complete description of Model Predictive Control theory and derivation of the necessary control matrices is included. The performance of each MPC controller is compared to that of the baseline controller for a wide range of wind profiles from both the Eastern and Western U.S. Test Ranges. Both MPC controllers are shown to provide reductions of greater than 50% in 0, Qo and structural bending moments. In addition, the effects of wind measurement delays and uncertainty on the performance of each controller are investigated.


Predictive Control for Spacecraft Rendezvous

Predictive Control for Spacecraft Rendezvous

Author: Afonso Botelho

Publisher: Springer Nature

Published: 2021-06-24

Total Pages: 116

ISBN-13: 3030756963

DOWNLOAD EBOOK

This brief addresses the design of model predictive control algorithms for performing space rendezvous manoeuvres. It consolidates developments within guidance and control algorithms, with the aim of improving the efficiency, safety, and autonomy of these manoeuvres. The brief presents several applications of model predictive control to rendezvous manoeuvres, including Ankersen zero-order-hold particular solution1, which provides a realistic thrust profile. It offers new approaches for rendezvous manoeuvres in elliptical orbits, formulating obstacle avoidance constraints, passive safety constraints, and robustness techniques. It also compares finite-horizon and variable-horizon formulations for model predictive control in the context of performance and computational complexity. Predictive Control for Spacecraft Rendezvous is accessible to academics and students new to the topics of orbital rendezvous and model predictive control, but also presents compelling subject matter for researchers and professionals in the aerospace industry.


Optimal Trajectory Reconfiguration and Retargeting for the X-33 Reusable Launch Vehicle

Optimal Trajectory Reconfiguration and Retargeting for the X-33 Reusable Launch Vehicle

Author: Patrick J. Shaffer

Publisher:

Published: 2004-09-01

Total Pages: 151

ISBN-13: 9781423519539

DOWNLOAD EBOOK

This thesis considers the problem of generating optimal entry trajectories for a reusable launch vehicle following a control surface failure. The thesis builds upon the work of Dr. David Doman, Dr. Michael Oppenheimer and Dr. Michael Bolender of the Air Vehicles Directorate, Air Force Research Lab Dayton Ohio. The primary focus of this work is to demonstrate the feasibility of inner loop reconfiguration and outer loop trajectory retargeting and replanning for the X-33 reusable launch vehicle (RLV) following the imposition of a control surface failure. The trajectory generation model employs path constraints generated by an AFRL trim deficiency algorithm coupled with an inner loop control allocator and aerodynamic database that captures the full 6-DOF vehicle aerodynamic effects while utilizing an outer loop 3-DOF model. The resulting optimal trajectory does not violate the trim deficiency constraints and provides additional margins for trajectories flown during failure conditions. The footprints generated by the thesis show that contemporary footprint analysis for vehicles experiencing control surface failures are overly optimistic when compared to those footprints that consider vehicle aerodynamic stability and realistic landable attitudes at the threshold of the landing runway. The results of the thesis also show the performance reductions resulting from decoupling the inner and outer loop and that trajectories can be generated to the landing runway without using a region of terminal area energy management.


Longitudinal Control and Footprint Analysis for a Reusable Military Launch Vehicle

Longitudinal Control and Footprint Analysis for a Reusable Military Launch Vehicle

Author: Anhtuan D. Ngo

Publisher:

Published: 2003

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

In this paper, we will examine a configuration for a reusable military launch vehicle (RMLS) concept. This configuration allows for the vehicle to land in an inverted attitude. Such inverted landing improves the turnaround time of the vehicle by reducing the maintenance requirements of the vehicle's thermal protection system. An analysis is performed to examine the impacts by the configuration on stability, control, and footprint for an RMLS configuration.


Concepts of Operations for a Reusable Launch Vehicle

Concepts of Operations for a Reusable Launch Vehicle

Author: Michael A. Rampino

Publisher:

Published: 1997

Total Pages: 68

ISBN-13:

DOWNLOAD EBOOK

The United States is embarked on a journey toward maturity as a spacefaring nation. One key step along the way is development of a reusable launch vehicle (RLV). The most recent National Space Transportation Policy (August 1994) assigned improvement and evolution of current expendable launch vehicles to the Department of Defense while National Aeronautical Space Administration (NASA) is responsible for working with industry on demonstrating RLV technology. The purpose of this study is to help ensure the US military, especially the USAF, is prepared to take advantage of RLVs should the NASA-led effort to develop an RLV demonstrator prove successful. The focus of this study is an explanation of how the US military could use RLVs, by describing and analyzing two concepts of operations. Four major conclusions resulted from the analysis. First, RLVs have military potential. They can perform a variety of missions including responsive spacelift, reconnaissance, and strike. However, the economic feasibility of using RLVs for earth-to-earth transportation is questionable. Second, design choices for an operational RLV will have effects on risk, cost, capability, and operations efficiency. Trade-offs will have to be made between NASA, commercial, and military requirements if all three parties are to use the same fleet of RLVs. Third, increased investment in propulsion technology development is warranted to ensure success. Fourth, the top priority for the RLV program, even from the military's perspective, should remain cheap and responsive access to space. The research led to three recommendations. First, the US military should become a more active participant in the RLV program to ensure its requirements are defined and incorporated. Second, America should not pursue development of operational RLVs before the technology is ready.