Model Predictive Control for Ascent Load Management of a Reusable Launch Vehicle

Model Predictive Control for Ascent Load Management of a Reusable Launch Vehicle

Author: Andrew Allen Martin

Publisher:

Published: 2002-06-01

Total Pages: 190

ISBN-13: 9781423509189

DOWNLOAD EBOOK

During the boost phase of ascent, winds have a significant impact on a launch vehicle's angle of attack, and can induce large structural loads on the vehicle. Traditional methods for mitigating these loads involve measuring the winds prior to launch and designing trajectories to minimize the vehicle angle of attack (0). The current balloon-based method of collecting wind field information produces wind profiles with significant uncertainty due to the inherent time delays associated with balloon measurement procedures. Managing the mission risk caused by these uncertain wind measurements has always been important to control system designers. This thesis will describe a novel approach to managing structural loads through the combination of a Light Detection and Ranging (LIDAR) wind sensor, and Model Predictive Control (MPC). LIDAR wind sensors can provide near real-time wind measurements, significantly reducing wind uncertainty at launch. MPC takes full advantage of this current wind information through a unique combination of proactive control, con-traint integration and tuning flexibility. This thesis describes the development of two types of MPC controllers, as well as a baseline controller representative of current control methods used by industry. A complete description of Model Predictive Control theory and derivation of the necessary control matrices is included. The performance of each MPC controller is compared to that of the baseline controller for a wide range of wind profiles from both the Eastern and Western U.S. Test Ranges. Both MPC controllers are shown to provide reductions of greater than 50% in 0, Qo and structural bending moments. In addition, the effects of wind measurement delays and uncertainty on the performance of each controller are investigated.


Guidance and Control 2001

Guidance and Control 2001

Author: Robert D. Culp

Publisher:

Published: 2001

Total Pages: 750

ISBN-13:

DOWNLOAD EBOOK

Taken from the January 2001 conference in Breckenridge, Colorado, these 41 papers discuss recent advances and experiences in guidance and control, including autonomous and remotely piloted terrestrial landings, landing on planetary bodies, guidance and control storyboard displays, and optical control. The lessons from specific projects, like the Sirius satellites, the Hubble telescope, and XMM-Newton, are emphasized. Contributors include researchers with universities, the military, and NASA. Author index only. c. Book News Inc.


Handbook of Model Predictive Control

Handbook of Model Predictive Control

Author: Saša V. Raković

Publisher: Springer

Published: 2018-09-01

Total Pages: 693

ISBN-13: 3319774891

DOWNLOAD EBOOK

Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.


Reusable Booster System

Reusable Booster System

Author: National Research Council

Publisher: National Academies Press

Published: 2013-01-10

Total Pages: 115

ISBN-13: 0309266564

DOWNLOAD EBOOK

On June 15, 2011, the Air Force Space Command established a new vision, mission, and set of goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory, the Space and Missile Systems Center, and the 14th and 24th Air Forces, the Air Force Space Command identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system (RBS) has been proposed as an approach to meet this challenge. The Air Force Space Command asked the Aeronautics and Space Engineering Board of the National Research Council to conduct an independent review and assessment of the RBS concept prior to considering a continuation of RBS-related activities within the Air Force Research Laboratory portfolio and before initiating a more extensive RBS development program. The committee for the Reusable Booster System: Review and Assessment was formed in response to that request and charged with reviewing and assessing the criteria and assumptions used in the current RBS plans, the cost model methodologies used to fame [frame?] the RBS business case, and the technical maturity and development plans of key elements critical to RBS implementation. The committee consisted of experts not connected with current RBS activities who have significant expertise in launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. The committee solicited and received input on the Air Force launch requirements, the baseline RBS concept, cost models and assessment, and technology readiness. The committee also received input from industry associated with RBS concept, industry independent of the RBS concept, and propulsion system providers which is summarized in Reusable Booster System: Review and Assessment.


Space Shuttle Missions Summary (NASA/TM-2011-216142)

Space Shuttle Missions Summary (NASA/TM-2011-216142)

Author: Robert D. Legler

Publisher: www.Militarybookshop.CompanyUK

Published: 2011-09-01

Total Pages: 300

ISBN-13: 9781782662235

DOWNLOAD EBOOK

Full color publication. This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.


Modeling and Optimization in Space Engineering

Modeling and Optimization in Space Engineering

Author: Giorgio Fasano

Publisher: Springer Science & Business Media

Published: 2012-10-23

Total Pages: 409

ISBN-13: 1461444683

DOWNLOAD EBOOK

This volume presents a selection of advanced case studies that address a substantial range of issues and challenges arising in space engineering. The contributing authors are well-recognized researchers and practitioners in space engineering and in applied optimization. The key mathematical modeling and numerical solution aspects of each application case study are presented in sufficient detail. Classic and more recent space engineering problems – including cargo accommodation and object placement, flight control of satellites, integrated design and trajectory optimization, interplanetary transfers with deep space manoeuvres, low energy transfers, magnetic cleanliness modeling, propulsion system design, sensor system placement, systems engineering, space traffic logistics, and trajectory optimization – are discussed. Novel points of view related to computational global optimization and optimal control, and to multidisciplinary design optimization are also given proper emphasis. A particular attention is paid also to scenarios expected in the context of future interplanetary explorations. Modeling and Optimization in Space Engineering will benefit researchers and practitioners working on space engineering applications. Academics, graduate and post-graduate students in the fields of aerospace and other engineering, applied mathematics, operations research and optimal control will also find the book useful, since it discusses a range of advanced model development and solution techniques and tools in the context of real-world applications and new challenges.