Model Generation for Natural Language Interpretation and Analysis

Model Generation for Natural Language Interpretation and Analysis

Author: Karsten Konrad

Publisher: Springer Science & Business Media

Published: 2004-02-10

Total Pages: 176

ISBN-13: 3540210695

DOWNLOAD EBOOK

Mathematical theorem proving has undergone an impressive development during the last two decades, resulting in a variety of powerful systems for applications in mathematical deduction and knowledge processing. Natural language processing has become a topic of outstanding relevance in information technology, mainly due to the explosive growth of the Web, where by far the largest part of information is encoded in natural language documents. This monograph focuses on the development of inference tools tailored to applications in natural language processing by demonstrating how the model generation paradigm can be used as a framework for the support of specific tasks in natural language interpretation and natural language based inference in a natural way. The book appears at a pivotal moment, when much attention is being paid to the task of adding a semantic layer to the Web, and representation and processing of natural language based semantic information pops up as a primary requirement for further technological progress.


Natural Language Processing in Artificial Intelligence

Natural Language Processing in Artificial Intelligence

Author: Brojo Kishore Mishra

Publisher: CRC Press

Published: 2020-11-01

Total Pages: 297

ISBN-13: 1000711315

DOWNLOAD EBOOK

This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.


Natural Language Processing with Python

Natural Language Processing with Python

Author: Steven Bird

Publisher: "O'Reilly Media, Inc."

Published: 2009-06-12

Total Pages: 506

ISBN-13: 0596555717

DOWNLOAD EBOOK

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.


New Frontiers in Artificial Intelligence

New Frontiers in Artificial Intelligence

Author: Takashi Washio

Publisher: Springer Science & Business Media

Published: 2006-06-27

Total Pages: 488

ISBN-13: 3540354700

DOWNLOAD EBOOK

This book presents the joint post-proceedings of five international workshops organized by the Japanese Society for Artificial Intelligence, during the 19th Annual Conference JSAI 2005. The volume includes 5 award winning papers of the main conference, along with 40 revised full workshop papers, covering such topics as logic and engineering of natural language semantics, learning with logics, agent network dynamics and intelligence, conversational informatics and risk management systems with intelligent data analysis.


Human-Computer Interaction. Theoretical Approaches and Design Methods

Human-Computer Interaction. Theoretical Approaches and Design Methods

Author: Masaaki Kurosu

Publisher: Springer Nature

Published: 2022-06-16

Total Pages: 660

ISBN-13: 3031053117

DOWNLOAD EBOOK

The three-volume set LNCS 13302, 13303 and 13304 constitutes the refereed proceedings of the Human Computer Interaction thematic area of the 24th International Conference on Human-Computer Interaction, HCII 2022, which took place virtually in June-July 2022. The 132 papers included in this HCI 2022 proceedings were organized in topical sections as follows: Part I: Theoretical and Multidisciplinary Approaches in HCI; Design and Evaluation Methods, Techniques and Tools; Emotions and Design; and Children-Computer Interaction, Part II: Novel Interaction Devices, Methods and Techniques; Text, Speech and Image Processing in HCI; Emotion and Physiological Reactions Recognition; and Human-Robot Interaction, Part III: Design and User Experience Case Studies, Persuasive Design and Behavioral Change; and Interacting with Chatbots and Virtual Agents.


Building Natural Language Generation Systems

Building Natural Language Generation Systems

Author: Ehud Reiter

Publisher: Cambridge University Press

Published: 2000-01-28

Total Pages: 274

ISBN-13: 0521620368

DOWNLOAD EBOOK

This book explains how to build Natural Language Generation (NLG) systems - computer software systems which use techniques from artificial intelligence and computational linguistics to automatically generate understandable texts in English or other human languages, either in isolation or as part of multimedia documents, Web pages, and speech output systems. Typically starting from some non-linguistic representation of information as input, NLG systems use knowledge about language and the application domain to automatically produce documents, reports, explanations, help messages, and other kinds of texts. The book covers the algorithms and representations needed to perform the core tasks of document planning, microplanning, and surface realization, using a case study to show how these components fit together. It also discusses engineering issues such as system architecture, requirements analysis, and the integration of text generation into multimedia and speech output systems.


Natural Language Processing in Action

Natural Language Processing in Action

Author: Hannes Hapke

Publisher: Simon and Schuster

Published: 2019-03-16

Total Pages: 798

ISBN-13: 1638356890

DOWNLOAD EBOOK

Summary Natural Language Processing in Action is your guide to creating machines that understand human language using the power of Python with its ecosystem of packages dedicated to NLP and AI. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recent advances in deep learning empower applications to understand text and speech with extreme accuracy. The result? Chatbots that can imitate real people, meaningful resume-to-job matches, superb predictive search, and automatically generated document summaries—all at a low cost. New techniques, along with accessible tools like Keras and TensorFlow, make professional-quality NLP easier than ever before. About the Book Natural Language Processing in Action is your guide to building machines that can read and interpret human language. In it, you'll use readily available Python packages to capture the meaning in text and react accordingly. The book expands traditional NLP approaches to include neural networks, modern deep learning algorithms, and generative techniques as you tackle real-world problems like extracting dates and names, composing text, and answering free-form questions. What's inside Some sentences in this book were written by NLP! Can you guess which ones? Working with Keras, TensorFlow, gensim, and scikit-learn Rule-based and data-based NLP Scalable pipelines About the Reader This book requires a basic understanding of deep learning and intermediate Python skills. About the Author Hobson Lane, Cole Howard, and Hannes Max Hapke are experienced NLP engineers who use these techniques in production. Table of Contents PART 1 - WORDY MACHINES Packets of thought (NLP overview) Build your vocabulary (word tokenization) Math with words (TF-IDF vectors) Finding meaning in word counts (semantic analysis) PART 2 - DEEPER LEARNING (NEURAL NETWORKS) Baby steps with neural networks (perceptrons and backpropagation) Reasoning with word vectors (Word2vec) Getting words in order with convolutional neural networks (CNNs) Loopy (recurrent) neural networks (RNNs) Improving retention with long short-term memory networks Sequence-to-sequence models and attention PART 3 - GETTING REAL (REAL-WORLD NLP CHALLENGES) Information extraction (named entity extraction and question answering) Getting chatty (dialog engines) Scaling up (optimization, parallelization, and batch processing)


Deep Learning in Natural Language Processing

Deep Learning in Natural Language Processing

Author: Li Deng

Publisher: Springer

Published: 2018-05-23

Total Pages: 338

ISBN-13: 9811052093

DOWNLOAD EBOOK

In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.


Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2017-11-21

Total Pages: 413

ISBN-13:

DOWNLOAD EBOOK

Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.


Embeddings in Natural Language Processing

Embeddings in Natural Language Processing

Author: Mohammad Taher Pilehvar

Publisher: Morgan & Claypool Publishers

Published: 2020-11-13

Total Pages: 177

ISBN-13: 1636390226

DOWNLOAD EBOOK

Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.