This book constitutes the strictly refereed post-workshop proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems, LCTES '98, held in Montreal, Canada, in June 1998. The 19 revised papers presented were carefully reviewed and selected from a total of 54 submissions for inclusion in the book; also included are one full paper and an abstract of an invited contribution. The papers address all current aspects of research and development in the rapidly growing area of embedded systems and real-time computing.
Embedded Systems: A Contemporary Design Tool, Second Edition Embedded systems are one of the foundational elements of todays evolving and growing computer technology. From operating our cars, managing our smart phones, cleaning our homes, or cooking our meals, the special computers we call embedded systems are quietly and unobtrusively making our lives easier, safer, and more connected. While working in increasingly challenging environments, embedded systems give us the ability to put increasing amounts of capability into ever-smaller and more powerful devices. Embedded Systems: A Contemporary Design Tool, Second Edition introduces you to the theoretical hardware and software foundations of these systems and expands into the areas of signal integrity, system security, low power, and hardware-software co-design. The text builds upon earlier material to show you how to apply reliable, robust solutions to a wide range of applications operating in todays often challenging environments. Taking the users problem and needs as your starting point, you will explore each of the key theoretical and practical issues to consider when designing an application in todays world. Author James Peckol walks you through the formal hardware and software development process covering: Breaking the problem down into major functional blocks; Planning the digital and software architecture of the system; Utilizing the hardware and software co-design process; Designing the physical world interface to external analog and digital signals; Addressing security issues as an integral part of the design process; Managing signal integrity problems and reducing power demands in contemporary systems; Debugging and testing throughout the design and development cycle; Improving performance. Stressing the importance of security, safety, and reliability in the design and development of embedded systems and providing a balanced treatment of both the hardware and the software aspects, Embedded Systems: A Contemporary Design Tool, Second Edition gives you the tools for creating embedded designs that solve contemporary real-world challenges. Visit the book's website at: http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=11853&itemId=1119457505
This title serves as an introduction ans reference for the field, with the papers that have shaped the hardware/software co-design since its inception in the early 90s.
The demands of increasingly complex embedded systems and associated performance computations have resulted in the development of heterogeneous computing architectures that often integrate several types of processors, analog and digital electronic components, and mechanical and optical components—all on a single chip. As a result, now the most prominent challenge for the design automation community is to efficiently plan for such heterogeneity and to fully exploit its capabilities. A compilation of work from internationally renowned authors, Model-Based Design for Embedded Systems elaborates on related practices and addresses the main facets of heterogeneous model-based design for embedded systems, including the current state of the art, important challenges, and the latest trends. Focusing on computational models as the core design artifact, this book presents the cutting-edge results that have helped establish model-based design and continue to expand its parameters. The book is organized into three sections: Real-Time and Performance Analysis in Heterogeneous Embedded Systems, Design Tools and Methodology for Multiprocessor System-on-Chip, and Design Tools and Methodology for Multidomain Embedded Systems. The respective contributors share their considerable expertise on the automation of design refinement and how to relate properties throughout this refinement while enabling analytic and synthetic qualities. They focus on multi-core methodological issues, real-time analysis, and modeling and validation, taking into account how optical, electronic, and mechanical components often interface. Model-based design is emerging as a solution to bridge the gap between the availability of computational capabilities and our inability to make full use of them yet. This approach enables teams to start the design process using a high-level model that is gradually refined through abstraction levels to ultimately yield a prototype. When executed well, model-based design encourages enhanced performance and quicker time to market for a product. Illustrating a broad and diverse spectrum of applications such as in the automotive aerospace, health care, consumer electronics, this volume provides designers with practical, readily adaptable modeling solutions for their own practice.
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
"This book provides innovative behavior models currently used for developing embedded systems, accentuating on graphical and visual notations"--Provided by publisher.