Mobile Edge Artificial Intelligence

Mobile Edge Artificial Intelligence

Author: Yuanming Shi

Publisher: Elsevier

Published: 2021-08-17

Total Pages: 206

ISBN-13: 0128238178

DOWNLOAD EBOOK

Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources. Presents advanced key enabling techniques, including model compression, wireless MapReduce and wireless cooperative transmission Provides advanced 6G wireless techniques, including over-the-air computation and reconfigurable intelligent surface Includes principles for designing communication-efficient edge inference systems, communication-efficient training systems, and communication-efficient optimization algorithms for edge machine learning


Mobile Edge Computing

Mobile Edge Computing

Author: Yan Zhang

Publisher: Springer Nature

Published: 2021-10-01

Total Pages: 123

ISBN-13: 3030839443

DOWNLOAD EBOOK

This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks.The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management.The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.


Mobile Edge Artificial Intelligence

Mobile Edge Artificial Intelligence

Author: Yuanming Shi

Publisher: Academic Press

Published: 2021-08-07

Total Pages: 208

ISBN-13: 0128238356

DOWNLOAD EBOOK

Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources. - Presents advanced key enabling techniques, including model compression, wireless MapReduce and wireless cooperative transmission - Provides advanced 6G wireless techniques, including over-the-air computation and reconfigurable intelligent surface - Includes principles for designing communication-efficient edge inference systems, communication-efficient training systems, and communication-efficient optimization algorithms for edge machine learning


Practical Deep Learning for Cloud, Mobile, and Edge

Practical Deep Learning for Cloud, Mobile, and Edge

Author: Anirudh Koul

Publisher: "O'Reilly Media, Inc."

Published: 2019-10-14

Total Pages: 585

ISBN-13: 1492034819

DOWNLOAD EBOOK

Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users


Edge AI

Edge AI

Author: Xiaofei Wang

Publisher: Springer Nature

Published: 2020-08-31

Total Pages: 156

ISBN-13: 9811561869

DOWNLOAD EBOOK

As an important enabler for changing people’s lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on deep learning as the most representative technique of AI, this book provides a comprehensive overview of how AI services are being applied to the network edge near the data sources, and demonstrates how AI and edge computing can be mutually beneficial. To do so, it introduces and discusses: 1) edge intelligence and intelligent edge; and 2) their implementation methods and enabling technologies, namely AI training and inference in the customized edge computing framework. Gathering essential information previously scattered across the communication, networking, and AI areas, the book can help readers to understand the connections between key enabling technologies, e.g. a) AI applications in edge; b) AI inference in edge; c) AI training for edge; d) edge computing for AI; and e) using AI to optimize edge. After identifying these five aspects, which are essential for the fusion of edge computing and AI, it discusses current challenges and outlines future trends in achieving more pervasive and fine-grained intelligence with the aid of edge computing.


Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences

Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences

Author: Pradip Debnath

Publisher: CRC Press

Published: 2021-07-15

Total Pages: 232

ISBN-13: 1000409813

DOWNLOAD EBOOK

Soft computing techniques are no longer limited to the arena of computer science. The discipline has an exponentially growing demand in other branches of science and engineering and even into health and social science. This book contains theory and applications of soft computing in engineering, health, and social and applied sciences. Different soft computing techniques such as artificial neural networks, fuzzy systems, evolutionary algorithms and hybrid systems are discussed. It also contains important chapters in machine learning and clustering. This book presents a survey of the existing knowledge and also the current state of art development through original new contributions from the researchers. This book may be used as a one-stop reference book for a broad range of readers worldwide interested in soft computing. In each chapter, the preliminaries have been presented first and then the advanced discussion takes place. Learners and researchers from a wide variety of backgrounds will find several useful tools and techniques to develop their soft computing skills. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in any branch of soft computing. The readers of this book will require minimum prerequisites of undergraduate studies in computation and mathematics.


TinyML

TinyML

Author: Pete Warden

Publisher: O'Reilly Media

Published: 2019-12-16

Total Pages: 504

ISBN-13: 1492052019

DOWNLOAD EBOOK

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size


Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Author: Krishna Kant Singh

Publisher: John Wiley & Sons

Published: 2020-07-08

Total Pages: 272

ISBN-13: 1119640369

DOWNLOAD EBOOK

Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.


Ad-Hoc, Mobile, and Wireless Networks

Ad-Hoc, Mobile, and Wireless Networks

Author: Luigi Alfredo Grieco

Publisher: Springer Nature

Published: 2020-10-15

Total Pages: 316

ISBN-13: 3030617467

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 19th International Conference on Ad-Hoc, Mobile, and Wireless Networks, ADHOC-NOW 2020, held in Bari, Italy, in October 2020.* The 19 full and 4 short papers presented were carefully reviewed and selected from 39 submissions. The papers provide an in-depth and stimulating view on the new frontiers in the field of mobile, ad hoc and wireless computing. They are organized in the following topical sections: intelligent, programmable and delay- and disruption- tolerant networks; internet of drones and smart mobility; internet of things and internet of medical things; secure communication protocols and architectures; and wireless systems. *The conference was held virtually due to the COVID-19 pandemic.


IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning

IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning

Author: Joao Gama

Publisher: Springer Nature

Published: 2021-01-09

Total Pages: 317

ISBN-13: 3030667707

DOWNLOAD EBOOK

This book constitutes selected papers from the Second International Workshop on IoT Streams for Data-Driven Predictive Maintenance, IoT Streams 2020, and First International Workshop on IoT, Edge, and Mobile for Embedded Machine Learning, ITEM 2020, co-located with ECML/PKDD 2020 and held in September 2020. Due to the COVID-19 pandemic the workshops were held online. The 21 full papers and 3 short papers presented in this volume were thoroughly reviewed and selected from 35 submissions and are organized according to the workshops and their topics: IoT Streams 2020: Stream Learning; Feature Learning; ITEM 2020: Unsupervised Machine Learning; Hardware; Methods; Quantization.