Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
Features that characterize the aging process include the gradual accumulation of cell damage after prolonged exposure to oxidative and inflammatory events over a lifetime. In addition to the accretion of lesions, the intrinsic levels of pro-oxidant and aberrant immune responses are elevated with age. These adverse events are often further enhanced by the chronic and slow progressing diseases that characterize the senescent brain and cardiovascular system. The incidence of some disorders such as Alzheimer's disease and vascular diseases are sufficiently prevalent in the extreme elderly that these disorders can arguably be considered "normal". Aging and Aging-Related Disorders examines the interface between normal and pathological aging, and illustrates how this border can sometimes be diffuse. It explores and illustrates the processes underlying the means by which aging becomes increasingly associated with inappropriate levels of free radical activity and how this can serve as a platform for the progression of age-related diseases. The book provides chapters that examine the interactive relationship between systems in the body that can enhance or sometimes even limit cellular longevity. In addition, specific redox mechanisms in cells are discussed. Another important aspect for aging discussed here is the close relationship between the systems of the body and exposure to environmental influences of oxidative stress that can affect both cellular senescence and a cell’s nuclear DNA. What may be even more interesting to note is that these external stressors are not simply confined to illnesses usually associated with aging, but can be evident in maturing and young individuals. A broad range of internationally recognized experts have contributed to this book. Their aim is to successfully highlight emerging knowledge and therapy for the understanding of the basis and development of aging–related disorders.
SARCOPENIA An in-depth examination of sarcopenia’s underexplored yet widespread impact within the field of gerontology Sarcopenia is common in older men and women, and yet awareness of its clinical relevance is still relatively low. Only formally included in the International Classification of Diseases in 2016, the condition may impact societies with serious health-related and financial consequences unless consistent, effective methods of identification and management are adopted. This second edition of Sarcopenia provides geriatricians and other healthcare professionals with a revised and expanded examination of this understudied and underdiagnosed condition. Edited by two leading authorities on the subject, it covers the epidemiology and diagnosis of sarcopenia, as well as treatment options and possible prevention strategies. Eight newly written chapters build upon existing knowledge with fresh data on topics including sarcopenia’s biomarkers and its impact on the healthcare economy. This important text: Defines sarcopenia and explains its clinical relevance Covers all recent scientific evidence Outlines treatment options Considers prevention strategies Discusses sarcopenia as a public health priority Features eight new chapters covering topics such as sarcopenia’s clinical management, its biomarkers, and its financial impact Containing vital information for clinicians and other professionals working in geriatric care, nursing homes, nutrition, cancer, endocrinology, surgery, sports medicine and many other specialties, Sarcopenia, second edition, is a groundbreaking and essential new resource.
With information for patients and practitioners on optimizing mitochondrial function for greater health and longevity Why do we age? Why does cancer develop? What's the connection between heart failure and Alzheimer's disease, or infertility and hearing loss? Can we extend lifespan, and if so, how? What is the Exercise Paradox? Why do antioxidant supplements sometimes do more harm than good? Many will be amazed to learn that all these questions, and many more, can be answered by a single point of discussion: mitochondria and bioenergetics. In Mitochondria and the Future of Medicine, Naturopathic Doctor Lee Know tells the epic story of mitochondria, the widely misunderstood and often-overlooked powerhouses of our cells. The legendary saga began over two billion years ago, when one bacterium entered another without being digested, which would evolve to create the first mitochondrion. Since then, for life to exist beyond single-celled bacteria, it's the mitochondria that have been responsible for this life-giving energy. By understanding how our mitochondria work, in fact, it is possible to add years to our lives, and life to our years. Current research, however, has revealed a dark side: many seemingly disconnected degenerative diseases have tangled roots in dysfunctional mitochondria. However, modern research has also endowed us with the knowledge on how to optimize its function, which is of critical importance to our health and longevity. Lee Know offers cutting-edge information on supplementation and lifestyle changes for mitochondrial optimization, such as CoQ10, D-Ribose, cannabinoids, and ketogenic dietary therapy, and how to implement their use successfully. Mitochondria and the Future of Medicine is an invaluable resource for practitioners interested in mitochondrial medicine and the true roots of chronic illness and disease, as well as anyone interested in optimizing their health.
Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.
The editor of this volume, having research interests in the field of ROS production and the damage to cellular systems, has identified a number of enzymes showing ·OH scavenging activities details of which are anticipated to be published in the near future as confirmatory experiments are awaited. It is hoped that the information presented in this book on NDs will stimulate both expert and novice researchers in the field with excellent overviews of the current status of research and pointers to future research goals. Clinicians, nurses as well as families and caregivers should also benefit from the material presented in handling and treating their specialised cases. Also the insights gained should be valuable for further understanding of the diseases at molecular levels and should lead to development of new biomarkers, novel diagnostic tools and more effective therapeutic drugs to treat the clinical problems raised by these devastating diseases.
Recognition that aging is not the accumulation of disease, but rather comprises fundamental biological processes that are amenable to experimental study, is the basis for the recent growth of experimental biogerontology. As increasingly sophisticated studies provide greater understanding of what occurs in the aging brain and how these changes occur
The 4th World Congress on Genetics, Geriatrics and Neurodegenerative Diseases Research (GeNeDis 2020) focuses on the latest major challenges in scientific research, new drug targets, the development of novel biomarkers, new imaging techniques, novel protocols for early diagnosis of neurodegenerative diseases, and several other scientific advances, with the aim of better, safer, and healthier aging. The increase in the average length of life leads to the development of various diseases in the elderly population. This volume focuses on the sessions from the conference on Geriatrics.
This authoritative handbook covers all aspects of immunosenescence, with contributions from experts in the research and clinical areas. It examines methods and models for studying immunosenescence; genetics; mechanisms including receptors and signal transduction; clinical relevance in disease states including infections, autoimmunity, cancer, metabolic syndrome, neurodegenerative diseases, frailty and osteoporosis; and much more.