Structural Design via Optimality Criteria

Structural Design via Optimality Criteria

Author: George I. N. Rozvany

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 488

ISBN-13: 9400911610

DOWNLOAD EBOOK

"During the last two decades, research on structural optimization became increasingly concerned with two aspects: the application of general numeri cal methods of optimization to structural design of complex real structures, and the analytical derivation of necessary and sufficient conditions for the optimality of broad classes of comparatively simple and more or less ideal ized structures. Both kinds of research are important: the first for obvious reasons; the second, because it furnishes information that is useful in testing the validity, accuracy and convergence of numerical methods and in assess ing the efficiency of practical designs. {raquo} (Prager and Rozvany, 1977a) The unexpected death of William Prager in March 1980 marked, in a sense, the end of an era in structural mechanics, but his legacy of ideas will re main a source of inspiration for generations of researchers to come. Since his nominal retirement in the early seventies, Professor and Mrs. Prager lived in Savognin, an isolated alpine village and ski resort surrounded by some of Switzerland's highest mountains. It was there that the author's close as sociation with Prager developed through annual pilgrimages from Australia and lengthy discussions which pivoted on Prager's favourite topic of struc tural optimization. These exchanges took place in the picturesque setting of Graubunden, on the terrace of an alpine restaurant overlooking snow-capped peaks, on ski-lifts or mountain walks, or during evening meals in the cosy hotels of Savognin, Parsonz and Riom.


Computer Aided Optimal Design: Structural and Mechanical Systems

Computer Aided Optimal Design: Structural and Mechanical Systems

Author: Carlos A. Mota Soares

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1018

ISBN-13: 364283051X

DOWNLOAD EBOOK

This book contains the edited version of lectures and selected papers presented at the NATO ADVANCED STUDY INSTITUTE ON COMPUTER AIDED OPTIMAL DESIGN: Structural and Mechanical Systems, held in Tr6ia, Portugal, 29th June to 11th July 1986, and organized by CEMUL -Center of Mechanics and Materials of the Technical University of Lisbon. The Institute was attended by 120 participants from 21 countries, including leading scientists and engineers from universities, research institutions and industry, and Ph.D. students. Some participants presented invited and contributed papers during the Institute and almost all participated actively in discussions on scientific aspects during the Institute. The Advanced Study Institute provided a forum for interaction among eminent scientists and engineers from different schools of thought and young reseachers. The Institute addressed the foundations and current state of the art of essential techniques related to computer aided optimal design of structural and mechanical systems, namely: Vari ational and Finite Element Methods in Optimal Design, Numerical Optimization Techniques, Design Sensitivity Analysis, Shape Optimal Design, Adaptive Finite Element Methods in Shape Optimization, CAD Technology, Software Development Techniques, Integrated Computer Aided Design and Knowledge Based Systems. Special topics of growing importance were also pre sented.


Optimality Criterion Methods in Structural Optimization

Optimality Criterion Methods in Structural Optimization

Author:

Publisher:

Published: 1982

Total Pages: 176

ISBN-13:

DOWNLOAD EBOOK

Optimization algorithms based on an optimal criterion to design a minimum weight structure are presented. The algorithms are derived for the direct design variable and the reciprocal design variable, and their relationship is discussed. The use of different algorithms and their effect on the convergence behavior is illustrated with sample problems. The presentation is limited to structures which can be analyzed by the finite element method and which are subjected to the constraints on stresses, displacements, minimum and maximum sizes and system stability. (Author).


Optimality Criterion Methods in Structural Optimization

Optimality Criterion Methods in Structural Optimization

Author: N. S. Khot

Publisher:

Published: 1982

Total Pages: 170

ISBN-13:

DOWNLOAD EBOOK

Optimization algorithms based on an optimal criterion to design a minimum weight structure are presented. The algorithms are derived for the direct design variable and the reciprocal design variable, and their relationship is discussed. The use of different algorithms and their effect on the convergence behavior is illustrated with sample problems. The presentation is limited to structures which can be analyzed by the finite element method and which are subjected to the constraints on stresses, displacements, minimum and maximum sizes and system stability. (Author).


Structural Optimization

Structural Optimization

Author: George I. N. Rozvany

Publisher: Springer

Published: 2011-09-20

Total Pages: 424

ISBN-13: 9789401071321

DOWNLOAD EBOOK

Proceedings of the IUTAM Symposium on Structural Optimization, Melbourne, Australia, February 9-13, 1988


Michell Structures

Michell Structures

Author: Tomasz Lewiński

Publisher: Springer

Published: 2018-09-27

Total Pages: 582

ISBN-13: 3319951807

DOWNLOAD EBOOK

The book covers the theory of Michell structures being the lightest and fully stressed systems of bars, designed within a given domain, possibly within the whole space, transmitting a given load towards a given support. Discovered already in 1904 by A.G.M. Michell, the structures named after him have attracted constant attention due to their peculiar feature of disclosing the optimal streams of stresses equilibrating a given load and thus determining the optimal layout of bars. The optimal layouts emerge from among all possible structural topologies, thus constituting unique designs being simultaneously light and stiff. The optimal structures turn out to be embedded in optimal vector fields covering the whole feasible domain. Key features include: a variationally consistent theory of bar systems, thin plates in bending and membrane shells; recapitulation of the theory of optimum design of trusses of minimum weight or of minimal compliance; the basis of 2D Michell theory for a single load case; kinematic and static approaches; 2D benchmark constructions including Hemp’s structures and optimal cantilevers; L-shape domain problems, three forces problem in 2D, bridge problems; revisiting the old - and delivering new - 3D benchmark solutions; extension to multiple load conditions; Prager-Rozvany grillages; the theory of funiculars and archgrids; the methods of optimum design of shape and material inspired by the theory of Michell structures, industrial applications. The book can be useful for graduate students, professional engineers and researchers specializing in the Optimum Design and in Topology Optimization in general.


Optimization of Large Structural Systems

Optimization of Large Structural Systems

Author: George I. N. Rozvany

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 1201

ISBN-13: 9401095779

DOWNLOAD EBOOK

G.I.N. Rozvany ASI Director, Professor of Structural Design, FB 10, Essen University, Essen, Germany Structural optimization deals with the optimal design of all systems that consist, at least partially, of solids and are subject to stresses and deformations. This inte grated discipline plays an increasingly important role in all branches of technology, including aerospace, structural, mechanical, civil and chemical engineering as well as energy generation and building technology. In fact, the design of most man made objects, ranging from space-ships and long-span bridges to tennis rackets and artificial organs, can be improved considerably if human intuition is enhanced by means of computer-aided, systematic decisions. In analysing highly complex structural systems in practice, discretization is un avoidable because closed-form analytical solutions are only available for relatively simple, idealized problems. To keep discretization errors to a minimum, it is de sirable to use a relatively large number of elements. Modern computer technology enables us to analyse systems with many thousand degrees of freedom. In the optimization of structural systems, however, most currently available methods are restricted to at most a few hundred variables or a few hundred active constraints.