This book introduces the materials and traditional processes involved in the manufacturing industry. It discusses the properties and application of different engineering materials as well as the performance of failure tests. The book lists both destructible and non-destructible processes in detail. The design associated with each manufacturing processes, such Casting, Forming, Welding and Machining, are also covered.
The future of manufacturing companies depends largely on their ability to adapt to swiftly changing global conditions. These are exemplified by international com- tition, rapidly growing intercommunication and the increased significance of en- ronmental issues [KLOC98a, ENGE02]. Precision machining with geometrically undefined cutting edges represents a key production engineering technology with high efficiency, security and machining quality. DIN norm 8589 subsumes within the group “machining with geometrically - defined cutting edges” the following material removal manufacturing processes: grinding, honing, lapping, free abrasive grinding and abrasive blast cutting. - chining is carried out in these production methods by means of more or less - regularly formed grains composed of hard substances brought into contact with the material. Of all methods understood as machining with geometrically undefined cutting edges, only grinding, honing and lapping can, strictly speaking, be considered p- cision machining. Free abrasive grinding and abrasive blast cutting, also treated in this book, represent a special group, as they generally cannot bring about geom- rical change in the material.
This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.
Machining is one of the most important manufacturing processes. Parts manufactured by other processes often require further operations before the product is ready for application. “Machining: Fundamentals and Recent Advances” is divided into two parts. Part I explains the fundamentals of machining, with special emphasis on three important aspects: mechanics of machining, tools, and work-piece integrity. Part II is dedicated to recent advances in machining, including: machining of hard materials, machining of metal matrix composites, drilling polymeric matrix composites, ecological machining (minimal quantity of lubrication), high-speed machining (sculptured surfaces), grinding technology and new grinding wheels, micro- and nano-machining, non-traditional machining processes, and intelligent machining (computational methods and optimization). Advanced students, researchers and professionals interested or involved in modern manufacturing engineering will find the book a useful reference.
The importance of lubricants in virtually all fields of the engineering industry is reflected by an increasing scientific research of the basic principles. Energy efficiency and material saving are just two core objectives of the employment of high-tech lubricants. The encyclopedia presents a comprehensive overview of the current state of knowledge in the realm of lubrication. All the aspects of fundamental data, underlying concepts and use cases, as well as theoretical research and last but not least terminology are covered in hundreds of essays and definitions, authored by experts in their respective fields, from industry and academic institutes.
Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.
Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications, Second Edition, explores the metal cutting processes with regard to theory and industrial practice. Structured into three parts, the first section provides information on the fundamentals of machining, while the second and third parts include an overview of the effects of the theoretical and experimental considerations in high-level machining technology and a summary of production outputs related to part quality. In particular, topics discussed include: modern tool materials, mechanical, thermal and tribological aspects of machining, computer simulation of various process phenomena, chip control, monitoring of the cutting state, progressive and hybrid machining operations, as well as practical ways for improving machinability and generation and modeling of surface integrity. This new edition addresses the present state and future development of machining technologies, and includes expanded coverage on machining operations, such as turning, milling, drilling, and broaching, as well as a new chapter on sustainable machining processes. In addition, the book provides a comprehensive description of metal cutting theory and experimental and modeling techniques, along with basic machining processes and their effective use in a wide range of manufacturing applications. The research covered here has contributed to a more generalized vision of machining technology, including not only traditional manufacturing tasks, but also potential (emerging) new applications, such as micro and nanotechnology. - Includes new case studies illuminate experimental methods and outputs from different sectors of the manufacturing industry - Presents metal cutting processes that would be applicable for various technical, engineering, and scientific levels - Includes an updated knowledge of standards, cutting tool materials and tools, new machining technologies, relevant machinability records, optimization techniques, and surface integrity
This book presents select peer reviewed proceedings of the International Conference on Applied Mechanical Engineering Research (ICAMER 2019). The books examines various areas of mechanical engineering namely design, thermal, materials, manufacturing and industrial engineering covering topics like FEA, optimization, vibrations, condition monitoring, tribology, CFD, IC engines, turbo-machines, automobiles, manufacturing processes, machining, CAM, additive manufacturing, modelling and simulation of manufacturing processing, optimization of manufacturing processing, supply chain management, and operations management. In addition, recent studies on composite materials, materials characterization, fracture and fatigue, advanced materials, energy storage, green building, phase change materials and structural change monitoring are also covered. Given the contents, this book will be useful for students, researchers and professionals working in mechanical engineering and allied fields.
In today’s modern world, the manufacturing industry is embracing an energy-efficient initiative and adopting green techniques. One aspect that has failed to adopt this scheme is flood grinding. Current flood grinding methods increase the treatment cost of grinding fluid and waste large quantities. In order to remain sustainable and efficient, in-depth research is necessary to study green grinding technologies that can ensure machining precision and surface quality of workpiece and reduce grinding fluid-induced environmental pollution. Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding provides emerging research exploring the theoretical and practical aspects of nanofluid lubrication and its application within grinding flow and green manufacturing. Featuring coverage on a broad range of topics such as airflow distribution, morphology analysis, and lubrication performance, this book is ideally designed for mechanical professionals, engineers, manufacturers, researchers, scientists, academicians, and students seeking current research on clean and low-carbon precision machining methods.
This book draws upon the science of tribology to understand, predict and improve abrasive machining processes. Pulling together information on how abrasives work, the authors, who are renowned experts in abrasive technology, demonstrate how tribology can be applied as a tool to improve abrasive machining processes. Each of the main elements of the abrasive machining system are looked at, and the tribological factors that control the efficiency and quality of the processes are described. Since grinding is by far the most commonly employed abrasive machining process, it is dealt with in particular detail. Solutions are posed to many of the most commonly experienced industrial problems, such as poor accuracy, poor surface quality, rapid wheel wear, vibrations, work-piece burn and high process costs. This practical approach makes this book an essential tool for practicing engineers. Uses the science of tribology to improve understanding and of abrasive machining processes in order to increase performance, productivity and surface quality of final products A comprehensive reference on how abrasives work, covering kinematics, heat transfer, thermal stresses, molecular dynamics, fluids and the tribology of lubricants Authoritative and ground-breaking in its first edition, the 2nd edition includes 30% new and updated material, including new topics such as CMP (Chemical Mechanical Polishing) and precision machining for micro-and nano-scale applications