Minimization of Welding Distortion and Buckling

Minimization of Welding Distortion and Buckling

Author: Pan Michaleris

Publisher: Elsevier

Published: 2011-05-25

Total Pages: 319

ISBN-13: 0857092901

DOWNLOAD EBOOK

Welding is a cost-effective and flexible method of fabricating large structures, but drawbacks such as residual stress, distortion and buckling must be overcome in order to optimize structural performance. Minimization of welding distortion and buckling provides a systematic overview of the methods of minimizing distortion and buckling in welded structures.Following an introductory chapter, part one focuses on understanding welding stress and distortion, with chapters on such topics as computational welding mechanics, modelling the effect of phase transformations on welding stress and distortion and using computationally efficient reduced-solution methods to understand welding distortion. Part two covers different methods of minimizing welding distortion. Chapters discuss methods such as differential heating for minimizing distortion in welded stiffeners, dynamic thermal tensioning, reverse-side heating and ways of minimizing buckling such as weld cooling and hybrid laser arc welding.With its distinguished editor and international team of contributors, Minimization of welding distortion and buckling is an essential reference for all welders and engineers involved in fabrication of metal end-products, as well as those in industry and academia with a research interest in the area. - Provides a systematic overview of the methods of minimizing distortion and buckling in welded structures - Focuses on understanding welding stress and distortion featuring computational welding mechanics and modelling the effect of phase transformations - Explores different methods of minimizing welding distortion discussing differential heating and dynamic thermal tensioning


Computational Welding Mechanics

Computational Welding Mechanics

Author: Lars-Erik Lindgren

Publisher: Elsevier

Published: 2014-01-23

Total Pages: 246

ISBN-13: 1845693558

DOWNLOAD EBOOK

Computational welding mechanics (CWM) provides an important technique for modelling welding processes. Welding simulations are a key tool in improving the design and control of welding processes and the performance of welded components or structures. CWM can be used to model phenomena such as heat generation, thermal stresses and large plastic deformations of components or structures. It also has a wider application in modelling thermomechanical and microstructural phenomena in metals. This important book reviews the principles, methods and applications of CWM.The book begins by discussing the physics of welding before going on to review modelling methods and options as well as validation techniques. It also reviews applications in areas such as fatigue, buckling and deformation, improved service life of components and process optimisation. Some of the numerical methods described in the book are illustrated using software available from the author which allows readers to explore CWM in more depth.Computational welding mechanics is a standard work for welding engineers and all those researching welding processes and wider thermomechanical and microstructural phenomena in metals. - Highlights the principles, methods and applications of CWM - Discusses the physics of welding - Assesses modelling methods and validation techniques


Control of Welding Distortion in Thin-Plate Fabrication

Control of Welding Distortion in Thin-Plate Fabrication

Author: Tom Gray

Publisher: Elsevier

Published: 2014-02-15

Total Pages: 353

ISBN-13: 0857099329

DOWNLOAD EBOOK

The intense temperature fields caused by heat sources in welding frequently lead to distortions and residual stresses in the finished product. Welding distortion is a particular problem in fabricating thin plate structures such as ships. Based on pioneering research by the authors, Control of Welding Distortion in Thin-Plate Fabrication reviews distortion test results from trials and shows how outcomes can be modeled computationally. The book provides readers with an understanding of distortion influences and the means to develop distortion-reducing strategies. The book is structured as an integrated treatment. It opens by reviewing the development of computational welding mechanics approaches to distortion. Following chapters describe the industrial context of stiffened plate fabrication and further chapters provide overviews of distortion mechanics and the modeling approach. A chapter on full-scale welding trials is followed by three chapters that develop modeling strategies through thermal process and thermo-mechanical simulations, based on finite-element analysis. Simplified models are a particular feature of these chapters. A final sequence of chapters explores the simulation of welding distortion in butt welding of thin plates and fillet welding of stiffened plate structures, and shows how these models can be used to optimize design and fabrication methods to control distortion. Control of Welding Distortion in Thin-Plate Fabrication is a comprehensive resource for metal fabricators, engineering companies, welders and welding companies, and practicing engineers and academics with an interest in welding mechanics. - Allows practitioners in the field to minimize distortion during the welding of thin plates - Provides computational tools that can give insight into the effects of welding and fabrication procedures - Demonstrates how welding distortion in thin plate fabrications can be minimized through design


Theory of Thermomechanical Processes in Welding

Theory of Thermomechanical Processes in Welding

Author: Andrzej Sluzalec

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 173

ISBN-13: 1402029918

DOWNLOAD EBOOK

The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.


Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades

Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades

Author: Christopher Borg Costanzi

Publisher: Springer Nature

Published: 2023-08-09

Total Pages: 207

ISBN-13: 3658415401

DOWNLOAD EBOOK

The presented book deals with the use of Wire Arc Additive Manufacturing (WAAM) as a means of stiffening and reinforcing free-form sheet metal as an application in facade. The main focus of the research is developing a methodology for welding ontop of pre-bent sheet metal; including digitizing of arbitrarily-formed sheet metal, developing of process-parameters for welding on thin sheet metal and generating force-responsive welding paths. The research is focused on singly-curved sheet metal profiles, and is concluded by the production of a number of small-scale prototypes which illustrate the potentials for reinforcing sheet metal using WAAM.


Thermo-Mechanical Modeling of Additive Manufacturing

Thermo-Mechanical Modeling of Additive Manufacturing

Author: Michael Gouge

Publisher: Butterworth-Heinemann

Published: 2017-08-03

Total Pages: 296

ISBN-13: 0128118210

DOWNLOAD EBOOK

Thermo-mechanical Modeling of Additive Manufacturing provides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additive manufacturing modeling, a description of adaptive mesh strategies, a thorough description of thermal losses and a discussion of residual stress and distortion. Part II applies the engineering fundamentals to direct energy deposition processes including laser cladding, LENS builds, large electron beam parts and an exploration of residual stress and deformation mitigation strategies. Part III concerns the thermo-mechanical modeling of powder bed processes with a description of the heat input model, classical thermo-mechanical modeling, and part scale modeling. The book serves as an essential reference for engineers and technicians in both industry and academia, performing both research and full-scale production. Additive manufacturing processes are revolutionizing production throughout industry. These technologies enable the cost-effective manufacture of small lot parts, rapid repair of damaged components and construction of previously impossible-to-produce geometries. However, the large thermal gradients inherent in these processes incur large residual stresses and mechanical distortion, which can push the finished component out of engineering tolerance. Costly trial-and-error methods are commonly used for failure mitigation. Finite element modeling provides a compelling alternative, allowing for the prediction of residual stresses and distortion, and thus a tool to investigate methods of failure mitigation prior to building. - Provides understanding of important components in the finite element modeling of additive manufacturing processes necessary to obtain accurate results - Offers a deeper understanding of how the thermal gradients inherent in additive manufacturing induce distortion and residual stresses, and how to mitigate these undesirable phenomena - Includes a set of strategies for the modeler to improve computational efficiency when simulating various additive manufacturing processes - Serves as an essential reference for engineers and technicians in both industry and academia


Advances in Additive Manufacturing and Joining

Advances in Additive Manufacturing and Joining

Author: M. S. Shunmugam

Publisher: Springer Nature

Published: 2019-10-16

Total Pages: 723

ISBN-13: 9813294337

DOWNLOAD EBOOK

This volume presents research papers on additive manufacturing (popularly known as 3D printing) and joining which were presented during the 7th International and 28th All India Manufacturing Technology, Design and Research conference 2018 (AIMTDR 2018). The contents of this volume present the latest technological advancements for improving the efficiency, accuracy and speed of the additive manufacturing process and in fusion and solid-state welding technologies, with a variety of technologies, including fused deposition modelling, poly jet 3D printing, weld deposition based technology, selective laser melting and important welding technologies being covered. This volume will be of interest to academicians, researchers, and practicing engineers alike.


Applied Welding Engineering

Applied Welding Engineering

Author: Ramesh Singh

Publisher: Elsevier

Published: 2011-11-01

Total Pages: 374

ISBN-13: 0123919177

DOWNLOAD EBOOK

While there are several books on market that are designed to serve a company's daily shop-floor needs. Their focus is mainly on the physically making specific types of welds on specific types of materials with specific welding processes. There is nearly zero focus on the design, maintenance and troubleshooting of the welding systems and equipment. Applied Welding Engineering: Processes, Codes and Standards is designed to provide a practical in-depth instruction for the selection of the materials incorporated in the joint, joint inspection, and the quality control for the final product. Welding Engineers will also find this book a valuable source for developing new welding processes or procedures for new materials as well as a guide for working closely with design engineers to develop efficient welding designs and fabrication procedures. Applied Welding Engineering: Processes, Codes and Standards is based on a practical approach. The book's four part treatment starts with a clear and rigorous exposition of the science of metallurgy including but not limited to: Alloys, Physical Metallurgy, Structure of Materials, Non-Ferrous Materials, Mechanical Properties and Testing of Metals and Heal Treatment of Steels. This is followed by self-contained sections concerning applications regarding Section 2: Welding Metallurgy & Welding Processes, Section 3: Nondestructive Testing, and Section 4: Codes and Standards. The author's objective is to keep engineers moored in the theory taught in the university and colleges while exploring the real world of practical welding engineering. Other topics include: Mechanical Properties and Testing of Metals, Heat Treatment of Steels, Effect of Heat on Material During Welding, Stresses, Shrinkage and Distortion in Welding, Welding, Corrosion Resistant Alloys-Stainless Steel, Welding Defects and Inspection, Codes, Specifications and Standards. The book is designed to support welding and joining operations where engineers pass plans and projects to mid-management personnel who must carry out the planning, organization and delivery of manufacturing projects. In this book, the author places emphasis on developing the skills needed to lead projects and interface with engineering and development teams. In writing this book, the book leaned heavily on the author's own experience as well as the American Society of Mechanical Engineers (www.asme.org), American Welding Society (www.aws.org), American Society of Metals (www.asminternational.org), NACE International (www.nace.org), American Petroleum Institute (www.api.org), etc. Other sources includes The Welding Institute, UK (www.twi.co.uk), and Indian Air force training manuals, ASNT (www.asnt.org), the Canadian Standard Association (www.cas.com) and Canadian General Standard Board (CGSB) (www.tpsgc-pwgsc.gc.ca). - Rules for developing efficient welding designs and fabrication procedures - Expert advice for complying with international codes and standards from the American Welding Society, American Society of Mechanical Engineers, and The Welding Institute(UK) - Practical in-depth instruction for the selection of the materials incorporated in the joint, joint inspection, and the quality control for the final product.


Welding Processes

Welding Processes

Author: Radovan Kovacevic

Publisher: BoD – Books on Demand

Published: 2012-11-21

Total Pages: 454

ISBN-13: 9535108549

DOWNLOAD EBOOK

Despite the wide availability of literature on welding processes, a need exists to regularly update the engineering community on advancements in joining techniques of similar and dissimilar materials, in their numerical modeling, as well as in their sensing and control. In response to InTech's request to provide undergraduate and graduate students, welding engineers, and researchers with updates on recent achievements in welding, a group of 34 authors and co-authors from 14 countries representing five continents have joined to co-author this book on welding processes, free of charge to the reader. This book is divided into four sections: Laser Welding; Numerical Modeling of Welding Processes; Sensing of Welding Processes; and General Topics in Welding.


Residual Stresses in Friction Stir Welding

Residual Stresses in Friction Stir Welding

Author: Nilesh Kulkarni

Publisher: Butterworth-Heinemann

Published: 2013-11-20

Total Pages: 59

ISBN-13: 012800732X

DOWNLOAD EBOOK

This book describes the fundamentals of residual stresses in friction stir welding and reviews the data reported for various materials. Residual stresses produced during manufacturing processes lead to distortion of structures. It is critical to understand and mitigate residual stresses. From the onset of friction stir welding, claims have been made about the lower magnitude of residual stresses. The lower residual stresses are partly due to lower peak temperature and shorter time at temperature during friction stir welding. A review of residual stresses that result from the friction stir process and strategies to mitigate it have been presented. Friction stir welding can be combined with additional in-situ and ex-situ manufacturing steps to lower the final residual stresses. Modeling of residual stresses highlights the relationship between clamping constraint and development of distortion. For many applications, management of residual stresses can be critical for qualification of component/structure. - Reviews magnitude of residual stresses in various metals and alloys - Discusses mitigation strategies for residual stresses during friction stir welding - Covers fundamental origin of residual stresses and distortion