The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this study, and the Statement of Task was expanded to include health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.
Minerals are part of virtually every product we use. Common examples include copper used in electrical wiring and titanium used to make airplane frames and paint pigments. The Information Age has ushered in a number of new mineral uses in a number of products including cell phones (e.g., tantalum) and liquid crystal displays (e.g., indium). For some minerals, such as the platinum group metals used to make cataytic converters in cars, there is no substitute. If the supply of any given mineral were to become restricted, consumers and sectors of the U.S. economy could be significantly affected. Risks to minerals supplies can include a sudden increase in demand or the possibility that natural ores can be exhausted or become too difficult to extract. Minerals are more vulnerable to supply restrictions if they come from a limited number of mines, mining companies, or nations. Baseline information on minerals is currently collected at the federal level, but no established methodology has existed to identify potentially critical minerals. This book develops such a methodology and suggests an enhanced federal initiative to collect and analyze the additional data needed to support this type of tool.
The world is currently undergoing an historic energy transition, driven by increasingly stringent decarbonisation policies and rapid advances in low-carbon technologies. The large-scale shift to low-carbon energy is disrupting the global energy system, impacting whole economies, and changing the political dynamics within and between countries. This open access book, written by leading energy scholars, examines the economic and geopolitical implications of the global energy transition, from both regional and thematic perspectives. The first part of the book addresses the geopolitical implications in the world’s main energy-producing and energy-consuming regions, while the second presents in-depth case studies on selected issues, ranging from the geopolitics of renewable energy, to the mineral foundations of the global energy transformation, to governance issues in connection with the changing global energy order. Given its scope, the book will appeal to researchers in energy, climate change and international relations, as well as to professionals working in the energy industry.
Metal usage by humans is vigorously increasing day-by-day. Since the turn of the new millennium, human needs have mainly depended on different types of metal. Ores and minerals are the primary natural sources of metals. In order to process metals, manufacturers require certain methods and technology. This reference book provides six widely used varieties of metal synthesizing and the chapters are contributed by internationally reputed professors and researchers. Chapter One focuses on biomineralization. Biomineralisation is an art of nature; it is an important process where organisms produce hierarchical mineral structures with diverse functions for their survival. This process happens through the self-organisation of organic and inorganic molecules under ambient conditions, resulting in highly structured materials with remarkable physical and chemical properties. Chapter Two refers to the application of biological methods in mineral processing. Chapter Three describes monazite mineral processing; monazite is the main resource of rare earth metals such as uranium and thorium. In this chapter, monazite mining, beneficiation and metallurgical routes are discussed. Chapter Four defines the hydrometallurgy of rare earth metals, including scandium. Chapter Five deals with ore extraction technology through computer aided engineering techniques. The final chapter concludes with the processing technology used to treat primary and secondary sources for base metal recovery.
The resources race is on. Powering our digital lives and green technologies are some of the Earth’s most precious metals — but they are running out. And what will happen when they do? The green-tech revolution has been lauded as the silver bullet to a new world. One that is at last free of oil, pollution, shortages, and cross-border tensions. Drawing on six years of research across a dozen countries, this book cuts across conventional green thinking to probe the hidden, dark side of green technology. By breaking free of fossil fuels, we are in fact setting ourselves up for a new dependence — on rare metals such as cobalt, gold, and palladium. They are essential to electric vehicles, wind turbines, solar panels, our smartphones, computers, tablets, and other everyday connected objects. China has captured the lion’s share of the rare metals industry, but consumers know very little about how they are mined and traded, or their environmental, economic, and geopolitical costs. The Rare Metals War is a vital exposé of the ticking time-bomb that lies beneath our new technological order. It uncovers the reality of our lavish and ambitious environmental quest that involves risks as formidable as those it seeks to resolve.
As the importance and dependence of specific mineral commodities increase, so does concern about their supply. The United States is currently 100 percent reliant on foreign sources for 20 mineral commodities and imports the majority of its supply of more than 50 mineral commodities. Mineral commodities that have important uses and face potential supply disruption are critical to American economic and national security. However, a mineral commodity's importance and the nature of its supply chain can change with time; a mineral commodity that may not have been considered critical 25 years ago may be critical today, and one considered critical today may not be so in the future. The U.S. Geological Survey has produced this volume to describe a select group of mineral commodities currently critical to our economy and security. For each mineral commodity covered, the authors provide a comprehensive look at (1) the commodity's use; (2) the geology and global distribution of the mineral deposit types that account for the present and possible future supply of the commodity; (3) the current status of production, reserves, and resources in the United States and globally; and (4) environmental considerations related to the commodity's production from different types of mineral deposits. The volume describes U.S. critical mineral resources in a global context, for no country can be self-sufficient for all its mineral commodity needs, and the United States will always rely on global mineral commodity supply chains. This volume provides the scientific understanding of critical mineral resources required for informed decisionmaking by those responsible for ensuring that the United States has a secure and sustainable supply of mineral commodities.
This open access book presents detailed pathways to achieve 100% renewable energy by 2050, globally and across ten geographical regions. Based on state-of-the-art scenario modelling, it provides the vital missing link between renewable energy targets and the measures needed to achieve them. Bringing together the latest research in climate science, renewable energy technology, employment and resource impacts, the book breaks new ground by covering all the elements essential to achieving the ambitious climate mitigation targets set out in the Paris Climate Agreement. For example, sectoral implementation pathways, with special emphasis on differences between developed and developing countries and regional conditions, provide tools to implement the scenarios globally and domestically. Non-energy greenhouse gas mitigation scenarios define a sustainable pathway for land-use change and the agricultural sector. Furthermore, results of the impact of the scenarios on employment and mineral and resource requirements provide vital insight on economic and resource management implications. The book clearly demonstrates that the goals of the Paris Agreement are achievable and feasible with current technology and are beneficial in economic and employment terms. It is essential reading for anyone with responsibility for implementing renewable energy or climate targets internationally or domestically, including climate policy negotiators, policy-makers at all levels of government, businesses with renewable energy commitments, researchers and the renewable energy industry. Part 2 of this title can be found at this Link: https://link.springer.com/book/10.1007/978-3-030-99177-7
Minerals, Metals and Sustainability examines the exploitation of minerals and mineral products and the implications for sustainability of the consumption of finite mineral resources and the wastes associated with their production and use. It provides a multi-disciplinary approach that integrates the physical and earth sciences with the social sciences, ecology and economics. Increasingly, graduates in the minerals industry and related sectors will not only require a deep technical and scientific understanding of their fields (such as geology, mining, metallurgy), but will also need a knowledge of how their industry relates to and can contribute to the transition to sustainability. Minerals, Metals and Sustainability is an important reference for students of engineering and applied science and geology; practising engineers, geologists and scientists; students of economics, social sciences and related disciplines; professionals in government service in areas such as resources, environment and sustainability; and non-technical professionals working in the minerals industry or in sectors servicing the minerals industry.
Mineral is defined as a naturally occurring solid chemical substance formed through biogeochemical processes, having characteristic chemical composition, highly ordered atomic structure, and specific physical properties. By comparison, a rock is an aggregate of minerals and/or mineraloids and does not have a specific chemical composition. Mineral resources of India are sufficiently rich and varied to provide the country with strong industrial base. The country is particularly rich in metallic minerals of the ferrous group such as iron ores, manganese etc. It has the world largest reserves in mica and bauxite. In the field of extractive metallurgy, mineral processing, also known as mineral dressing or ore dressing, is the process of separating commercially valuable minerals from their ores. Mining is the extraction of valuable minerals or other geological materials from the earth, from an ore body; the term also includes the removal of soil. Materials recovered by mining include base metals, precious metals, iron, uranium, limestone, etc. There are three methods of mining; conventional or manual mining, semi mechanised mining and mechanised mining. Geopolymerisation is the processes which can transfer large scale alumina silicate wastes into value added geopolymeric products with sound mechanical strength and high acid, fire and bacterial resistance. One of many useful applications of geopolymerisation is the immobilization of heavy metals and radioactive elements. The production of non ferrous metals from natural mineral ores is, in general, highly energy intensive. Some of the non ferrous mineral sources are bauxite, granite, magnesite, limonite etc. Limestone is a sedimentary rock composed largely of the minerals calcite and aragonite, which are different crystal forms of calcium carbonate (CaCO3). Limestone processing includes several steps; primary crushing (jaw crusher, gyratory crusher, impact breaker), secondary crushing (cone crusher), fine grinding and pulverization, conveying, screening, washing, heavy media separation, optical mineral sorters, drying and storage. The non metallic mineral mining and quarrying industry segment covers a wide range of mineral extraction. Most of these minerals are found in abundance close to the surface, so underground mining is uncommon in this industry segment. Mineral resources of India are sufficiently rich and varied to provide the country with strong industrial base. The country is particularly rich in metallic minerals of the ferrous group such as iron ores, manganese etc. It has the world largest reserves in mica and bauxite. This book basically deals with methods of mining, mining machineries, geopolymerisation of mineral products and waste, industrial and scientific aspects of non ferrous metals production, processing of alumina rich Indian iron ore slimes, limestone processing, limestone exploration and extraction, the mineralogy of asbestos, the use of asbestos and asbestos free substitutes in buildings, flotation column ;a novel technique in mineral processing, applications of thermal plasma in the synthesis of covalent carbides, nitrogenous fertilizers, manufacture of ammonium bicarbonate etc. This book is designed to describe the details of mining and processing of different minerals like alumina rich iron ore slimes, conversion of waste to a high valued product, lime stone, asbestos, coal beneficiation, gravity concentration processes to recover values from coal and ore fines and many more. The book is meant for everyone who wants to study about the subject or wants to venture into the field of mineral processing. TAGS Ammonium Salts, Best small and cottage scale industries, Business guidance for Mineral Production, Business guidance to clients, Business of Mining, Business Plan for a Startup Business, Business Plan small scale mining project, Business start-up, Chemistry and physics of Asbestos, Chemistry of nitrogen and its inorganic compounds, Coal and Ore Fines, Coal Beneficiation, Extractive Metallurgy, Fertilizers, Great Opportunity for Startup, Growing a mineral processing business, How to start a Mineral manufacturing business, How to Start a Mineral processing industry?, How to Start a Mineral Production Business, How to start a mining business, How to start a successful Mineral processing business, How to start mineral grinding industry in India, How to Start Mineral Processing Industry in India, Introduction to Mineral Processing, Limes manufacturing, Limestone exploration and extraction, Limestone Processing, Manufacture of Ammonium Bicarbonate, Manufacture of ordinary superphosphate, Metals and Minerals Production in India, Metals, Minerals & Mining Industry, Mineral Based Small Scale Industries Projects, Mineral industry, Mineral mining business plan, Mineral processing, Mineral Processing & mining Based Profitable Projects, Mineral processing book, Mineral processing Business, Mineral Processing Industry in India, Mineral processing metallurgy, Mineral processing plants, Mineral Processing Projects, Mineral processing Small Business, Mineral processing technology, Mineral Production, Mineral production for mining sector, Minerals and Mineral Processing, Minerals Engineering, Mining & mineral processing industry, Mining and Mineral Processing, Mining processing, Mining Sector Investment and Business, Mining, Mineral Processing & Metals Industry, Modern small and cottage scale industries, Most Profitable Mineral Processing Business Ideas, New small scale ideas in Mineral processing industry, Non – Ferrous Metals Production, Ordinary Superphosphate, Ore Dressing, Processing of Iron Ore Slimes, Profitable small and cottage scale industries, Profitable Small Scale Mineral processing, Setting up and opening your Mineral processing Business, Setting up of Mineral Processing Units, Small Business ideas in the Mining Industry, Small Scale Mineral Processing Projects, Small scale Mineral production line, Small Scale Mining Business Plan - Mineral Processing, Start up India, Stand up India, Starting a Mineral Crushing Business, Starting a Mineral Processing Business, Starting Mineral Plant, Start-up Business Plan for Mineral processing, Startup ideas, Startup Project for Mineral processing, Start-ups eye opportunities in mining sector, mineral and mining processing, mineral and mineral processing