The glitter of gold created an era when a few determined prospectors searched the rugged hills and forests of Michigan's Upper Peninsula for the valuable mineral. Their stories range from the discovery of Lake Superior's mineral wealth in the 1840's to the modern mining and prospecting practices today.
The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this study, and the Statement of Task was expanded to include health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.
Minerals are part of virtually every product we use. Common examples include copper used in electrical wiring and titanium used to make airplane frames and paint pigments. The Information Age has ushered in a number of new mineral uses in a number of products including cell phones (e.g., tantalum) and liquid crystal displays (e.g., indium). For some minerals, such as the platinum group metals used to make cataytic converters in cars, there is no substitute. If the supply of any given mineral were to become restricted, consumers and sectors of the U.S. economy could be significantly affected. Risks to minerals supplies can include a sudden increase in demand or the possibility that natural ores can be exhausted or become too difficult to extract. Minerals are more vulnerable to supply restrictions if they come from a limited number of mines, mining companies, or nations. Baseline information on minerals is currently collected at the federal level, but no established methodology has existed to identify potentially critical minerals. This book develops such a methodology and suggests an enhanced federal initiative to collect and analyze the additional data needed to support this type of tool.
Written for students and professionals, this revised textbook surveys the mineral industry from geological, environmental and economic perspectives. Thoroughly updated, the text includes a new chapter on technology industry metals as well as separate chapters on mineral economics and environmental geochemistry. Carefully designed figures simplify difficult concepts and show the location of important deposits and trade patterns, emphasising the true global nature of mineral resources. Featuring boxes highlighting special interest topics, the text equips students with the skills they need to contribute to the energy and mineral questions currently facing society, including issues regarding oil pipelines, nuclear power plants, water availability and new mining locations. Technical terms are highlighted when first used, and references are included to allow students to delve more deeply into areas of interest. Multiple choice and short answer questions are provided for instructors online at www.cambridge.org/kesler to complete the teaching package.