Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications

Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications

Author: A. Strang

Publisher: Woodhead Publishing Limited

Published: 1998

Total Pages: 496

ISBN-13:

DOWNLOAD EBOOK

The second in a series of international conferences focusing attention on the microstructural changes occurring in high temperature materials during service exposure and identifying the processes and mechanisms leading to the observed degradation of their mechanical properties. Highlights the work in progress to develop improved high temperature materials more resistant to microstructural degradation in service.


Creep and Fracture in High Temperature Components

Creep and Fracture in High Temperature Components

Author: European Creep Collaborative Committee

Publisher: DEStech Publications, Inc

Published: 2005

Total Pages: 1136

ISBN-13: 9781932078497

DOWNLOAD EBOOK

Provides information from around the world on creep in multiple high-temperature metals, alloys, and advanced materials.


From Creep Damage Mechanics to Homogenization Methods

From Creep Damage Mechanics to Homogenization Methods

Author: Holm Altenbach

Publisher: Springer

Published: 2015-06-03

Total Pages: 606

ISBN-13: 3319194402

DOWNLOAD EBOOK

This volume presents a collection of contributions on materials modeling, which were written to celebrate the 65th birthday of Prof. Nobutada Ohno. The book follows Prof. Ohno’s scientific topics, starting with creep damage problems and ending with homogenization methods.


Proceedings: Creep & Fracture in High Temperature Components

Proceedings: Creep & Fracture in High Temperature Components

Author: I. A. Shibli

Publisher: DEStech Publications, Inc

Published: 2009

Total Pages: 661

ISBN-13: 160595005X

DOWNLOAD EBOOK

A compendium of European and worldwide research investigating creep, fatigue and failure behaviors in metals under high-temperature and other service stresses. It helps set the standards for coordinating creep data and for maintaining defect-free quality in high-temperature metals and metal-based weldments.


Modeling High Temperature Materials Behavior for Structural Analysis

Modeling High Temperature Materials Behavior for Structural Analysis

Author: Konstantin Naumenko

Publisher: Springer

Published: 2016-05-11

Total Pages: 381

ISBN-13: 331931629X

DOWNLOAD EBOOK

This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.


Creep and High Temperature Deformation of Metals and Alloys

Creep and High Temperature Deformation of Metals and Alloys

Author: Stefano Spigarelli

Publisher: MDPI

Published: 2019-12-12

Total Pages: 212

ISBN-13: 3039218786

DOWNLOAD EBOOK

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.


Creep in Structures VI

Creep in Structures VI

Author: Holm Altenbach

Publisher: Springer Nature

Published: 2023-08-04

Total Pages: 355

ISBN-13: 3031390709

DOWNLOAD EBOOK

This book offers a current state of the art in analysis and modeling of creep phenomena with applications to the structural mechanics. It presents the some presentations from the IUTAM-Symposium series "Creep in Structures", which held in Magdeburg (Germany) in September 2023, and it discusses many advances and new results in the field. These are for example: interlinks of mechanics with materials science in multi-scale analysis of deformation and damage mechanisms over a wide range of stresses and temperature; development and analysis of new alloys for (ultra)high-temperature applications; formulation and calibration of advanced constitutive models of inelastic behavior under transient loading and temperature conditions; development of efficient procedures and machine learning techniques for identification of material parameters in advanced constitutive laws; introduction of gradient-enhanced and non-local theories to account for damage and fracture processes; and application of new experimental methods, such as digital image correlation, for the analysis of inelastic deformation under multi-axial stress state.