Microscopic Properties and Processes in Minerals

Microscopic Properties and Processes in Minerals

Author: Kate Wright

Publisher: Springer Science & Business Media

Published: 1999-10-31

Total Pages: 670

ISBN-13: 9780792359814

DOWNLOAD EBOOK

One of the major developments in Earth Sciences in general, and mineralogy in particular, has been the growth of our understanding of the microscopic behaviour of the complex materials that make up the Earth. This has been made possible by advances in our ability to probe minerals at the atomic level, over a large range of pressure and temperature conditions. New experimental techniques include the use of scanning probe microscopies to investigate mineral surfaces, as well as the use of neutron scattering, nuclear spectroscopies and synchrotron radiation to investigate the bonding and structure of minerals. In addition, there have been major developments in computational methods so that it is now possible to calculate the electronic structure of many rock forming materials. The aim of this volume is to give a coherent survey of the latest developments in experimental and theoretical approaches to the study of microscopic propertie~ and processes in minerals. Chapters in the book cover a number of key themes in the mineral sciences such as the behaviour of minerals at extremes of pressure and temperature, ordering in complex silicates, mechanisms of water incorporation in mantle phases, the importance of reactions occurring at the mineral surface, and the ability of computational methods to provide useful, qualitative information on the bulk and surface properties of minerals. The background to several experimental techniques is covered in some detail with examples of relevance to the issues cited above.


Introduction to Mineralogy and Petrology

Introduction to Mineralogy and Petrology

Author: Swapan Kumar Haldar

Publisher: Elsevier

Published: 2020-07-29

Total Pages: 437

ISBN-13: 0323851363

DOWNLOAD EBOOK

Introduction to Mineralogy and Petrology, second edition, presents the essentials of both disciplines through an approach accessible to industry professionals, academic researchers, and students alike. This new edition emphasizes the relationship between rocks and minerals, right from the structures created during rock formation through the economics of mineral deposits. While petrology is classified on the lines of geological evolution and rock formation, mineralogy speaks to the physical and chemical properties, uses, and global occurrences for each mineral, emphasizing the need for the growth of human development. The primary goal is for the reader to identify minerals in all respects, including host-rocks, and mineral deposits, with additional knowledge of mineral-exploration, resource, extraction, process, and ultimate use. To help provide a comprehensive analysis across ethical and socio-economic dimensions, a separate chapter describes the hazards associated with minerals, rocks, and mineral industries, and the consequences to humanity along with remedies and case studies. New to the second edition: includes coverage of minerals and petrology in extra-terrestrial environments as well as case studies on the hazards of the mining industry. Addresses the full scope of core concepts of mineralogy and petrology, including crystal structure, formation and grouping of minerals and soils, definition, origin, structure and classification of igneous, sedimentary and metamorphic rocks Features more than 250 figures, illustrations and color photographs to vividly explore the fundamental principles of mineralogy and petrology Offers a holistic approach to both subjects, beginning with the formation of geologic structures that is followed by the hosting of mineral deposits and the exploration and extraction of lucrative, usable products that improve the health of global economies Includes new content on minerals and petrology in extraterrestrial environments and case studies on hazards in the mining industry


Ore Microscopy

Ore Microscopy

Author: James R. Craig

Publisher:

Published: 1981-06-04

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

Provides an up-to-date introduction to the subject of ore microscopy, emphasizing the basic skills required for the study of opaque minerals in polished sections. Describes the modern ore microscope, the preparation of polished and polished-thin sections of opaque minerals and ores, and the identification of these minerals using both qualitative techniques and the quantitative methods of reflectance and microhardness measurement. Later sections discuss the interpretation of textural intergrowths of ore minerals and the determination of their paragenesis, along with the examination of coexisting minerals for determining their physio-chemical conditions of formation. Appendices contain the data necessary to identify approximately 100 of the more common ore minerals and those frequently encountered by the professional scientist.


The Periodic Table

The Periodic Table

Author: Eric R. Scerri

Publisher:

Published: 2020

Total Pages: 503

ISBN-13: 019091436X

DOWNLOAD EBOOK

The Periodic Table: Its Story and Its Significance traces the evolution and development of the periodic table, from Mendeleev's 1869 first published table and onto the modern understanding provided by modern physics.


Rutley’s Elements of Mineralogy

Rutley’s Elements of Mineralogy

Author: C.D. Gribble

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 9401168326

DOWNLOAD EBOOK

Rutley's elements of mineralogy has been around for a long time, certainly throughout my own lifetime; and if my great grandfather had read geology, it would have been prescribed reading for him too! It has been rewritten and revised frequently since fir~t conceived by Frank Rutley in the late 19th century. Major revisions occurred in 1902, and then in 1914, when H. H. Read first took over the authorship, and thereafter in 1936 and in 1965 when the last major changes occurred. It was with some trepidation that I agreed to attempt this revision. I had been asked to do it by Janet Watson in 1979, but various commitments delayed my start on it until 1984. This 27th edition encompasses a number of changes. Chapters 1-5 have the same headings as before, but considerable changes have been made in all of them, particularly 1, 3, 4 and 5. Comments sought prior to the revision revealed considerable disagreement about the role of blowpipe analyses in the book. I have only once had blowpipe analyses demon strated to me, and have never used them; but there is no doubt that they are employed in many countries, and many of the tests (flame colour, bead, etc. ) are still useful as rapid indicators of which element is present in a mineral. I have therefore kept blowpipe analysis information in Rutley, but have relegated it to an appendix.


The Ore Minerals Under the Microscope

The Ore Minerals Under the Microscope

Author: Bernhard Pracejus

Publisher: Elsevier

Published: 2008-11-11

Total Pages: 895

ISBN-13: 0444528636

DOWNLOAD EBOOK

"This book is a very detailed ore microscopy atlas in colour, containing observations for some 430 minerals (mostly opaques and a few gangue minerals). Its main emphasis lies on the display of the respective mineral's most important optical properties (shown in up to 5 high-quality photos for each mineral with scale). The colour plates are supplemented by brief tabulated data, such as name and synonyms, mineral group, chemical composition, major formation environment, reflection colour/shade, and reflectivity. Wherever reflectivity data were not available, the respective value was estimated on the basis of some 4 common/standard minerals of a similar colour or grey shade."--BOOK JACKET.


Theoretical and Computational Methods in Mineral Physics

Theoretical and Computational Methods in Mineral Physics

Author: Renata M. Wentzcovitch

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-17

Total Pages: 504

ISBN-13: 150150844X

DOWNLOAD EBOOK

Volume 71 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Theoretical and Computational Methods in Mineral Physics held prior (December 10-12, 2009) to the Annual fall meeting of the American Geophysical Union in San Francisco, California. The meeting was held at the Doubletree Hotel & Executive Meeting Center in Berkeley, California. Contents: Density functional theory of electronic structure: a short course for mineralogists and geophysicists The Minnesota density functionals and their applications to problems in mineralogy and geochemistry Density-functional perturbation theory for quasi-harmonic calculations Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory First principles quasiharmonic thermoelasticity of mantle minerals An overview of quantum Monte Carlo methods Quantum Monte Carlo studies of transition metal oxides Accurate and efficient calculations on strongly correlated minerals with the LDA+U method: review and perspectives Spin-state crossover of iron in lower-mantle minerals: results of DFT+U investigations Simulating diffusion Modeling dislocations and plasticity of deep earth materials Theoretical methods for calculating the lattice thermal conductivity of minerals Evolutionary crystal structure prediction as a method for the discovery of minerals and materials Multi-Mbar phase transitions in minerals Computer simulations on phase transitions in ice Iron at Earth’s core conditions from first principles calculations First-principles molecular dynamics simulations of silicate melts: structural and dynamical properties Lattice dynamics from force-fields as a technique for mineral physics An efficient cluster expansion method for binary solid solutions: application to the halite-silvite, NaCl-KCl, system Large scale simulations Thermodynamics of the Earth’s mantle


Transmission Electron Microscopy of Minerals and Rocks

Transmission Electron Microscopy of Minerals and Rocks

Author: Alex C. McLaren

Publisher: Cambridge University Press

Published: 1991-04-26

Total Pages: 400

ISBN-13: 9780521350983

DOWNLOAD EBOOK

Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.