MicroRNA (miRNA) biology is a cutting-edge topic in basic as well as biomedical research. This is a specialized book focusing on the current understanding of the role of miRNAs in the development, progression, invasion, and metastasis of diverse types of cancer. It also reviews their potential for applications in cancer diagnosis, prognosis, and th
Aberrant expression and function of microRNAs (miRNAs) in cancer have added a new layer of complexity to the understanding of development and progression of the disease state. It has been demonstrated that miRNAs have a crucial function in oncogenesis by regulating cell proliferation and apoptosis as oncogenes or tumor suppressors. The expression signatures of miRNAs provide exciting opportunities in the diagnosis, prognosis and therapy of cancer. Since miRNAs can function as either oncogenes or tumor suppressor genes in oncogenesis, the potential of using these small RNAs as therapeutic targets opens up new opportunities for cancer therapy by either inhibiting or augmenting their activity.
MicroRNAs (miRNAs) are RNA molecules, conserved by evolution, that regulate gene expressions and their recent discovery is revolutionising both basic biomedical research and drug discovery. Expression levels of MiRNAs have been found to vary between tissues and with developmental stages and hence evaluation of the global expression of miRNAs potentially provides opportunities to identify regulatory points for many different biological processes. This wide-ranging reference work, written by leading experts from both academia and industry, will be an invaluable resource for all those wishing to use miRNA techniques in their own research, from graduate students, post-docs and researchers in academia to those working in R&D in biotechnology and pharmaceutical companies who need to understand this emerging technology. From the discovery of miRNAs and their functions to their detection and role in disease biology, this volume uniquely integrates the basic science with industry application towards drug validation, diagnostic and therapeutic development. Forewords by: Sidney Altman, Yale University, Winner of the Nobel Prize in Chemistry, 1989 and Victor R. Ambros, Dartmouth Medical School, Co-discoverer of MicroRNAs
This new volume of Current Topics in Developmental Biology covers developmental timing, with contributions from an international board of authors. The chapters provide a comprehensive set of reviews covering such topics as the timing of developmental programs in Drosophila, temporal patterning of neural progenitors, and environmental modulation of developmental timing.
This book is a state-of-the-art summary of the latest achievements in cell cycle control research with an outlook on the effect of these findings on cancer research. The chapters are written by internationally leading experts in the field. They provide an updated view on how the cell cycle is regulated in vivo, and about the involvement of cell cycle regulators in cancer.
This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.
Oncogenes and tumour suppressor genes have been the focus of much research because of their role not only in cancer but also in normal cell growth and differentiation. Oncogenes and Tumour Suppressors is a unique volume that brings together a team of leading researchers to present and critically assess our current knowledge. The book covers two major areas of interest: oncogenes and signal transduction, and tumour supressors and cell cycle control. Topics covered include the mechanisms of oncogene perturbation; growth factors and their receptors in cell transformation; oncogenic cytoplasmic protein tyrosine kinases; the RAS/RAP/ERK signal transduction pathway; oncogenic transcription factors; mammalian cell cycle control; the retinoblastoma gene product and its relatives; the tumour suppressor gene p53; tumour suppressors and the inheritance of cancer; the clinical relevance of oncogenes. Oncogenes and Tumour Suppressors is a major review work that provides an unparalleled summary of our current understanding of this field as viewed by some of its leading researchers. It is of interest to all those involved in research on the cell cycle, signal transduction, and cancer biology. The book is also an excellent reference source with over 1800 selected citations to the primary literature.
MicroRNA in Human Malignancies offers a deep overview of the role and translational significance of miRNAs in the development of cancer and other malignancies. The book establishes the foundations of the field by covering essential mechanisms and the translational potential of miRNAs in the field of oncology. Specific topics covered include invasion and metastasis, miRNAs and metabolism, and opportunities of miRNAs in therapeutics. Chapters on diseases include content on disease-related pathophysiology, as well as diagnostic, prognostic and predictive value. This book is an essential reference for students entering the field, as well as researchers and investigators. - Provides fundamental and translational chapters that facilitate the acquisition of knowledge needed to design and perform innovative miRNA-related research studies - Synthesizes current research, with a critical review on the field - Offers in-depth research by leading experts in the field
This book presents current advances in the emerging interdisciplinary field of microRNA research of human cancers from a unique perspective of quantitative sciences: bioinformatics, computational and systems biology, and mathematical modeling. This volume contains adaptations and critical reviews of recent state-of-the-art studies, ranging from technological advances in microRNA detection and profiling, clinically oriented microRNA profiling in several human cancers, to a systems biology analysis of global patterns of microRNA regulation of signaling and metabolic pathways. Interactions with transcription factor regulatory networks and mathematical modeling of microRNA regulation are also discussed.
Given this pervasiveness and importance of miRNA-mediated gene regulation, it should come as little surprise that miRNAs themselves are also highly regulated. However, the recent explosion of knowledge on this topic has been remarkable, providing a primary motivation for publication of this book. As miRNAs are transcribed by RNA polymerase II, the enzyme that also generates mRNAs, it was perhaps not unexpected that miRNA transcription would be subject to regulation, and we have willfully mitted this aspect from this monograph. However, what has been unexpected is the extent of post-transcriptional regulation of miRNAs that is illustrated in this book.