Discusses state-of-the-art and the realization of the integrated device to test the amplification proposal of a synthetic nucleic acid template. It covers the control algorithm for designing the Maximum Power Point Tracker (MPPT) enabled electrical interface system. Discusses designing and generating new metasurface antenna for future applications. Covers integration of optical structures with MEMS devices for implementation in Photonic Integrated Circuits. Presents state-of-art in-exact multiplier architectures and their efficient implementation.
Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamond and can be given to advanced readers. Paragraphs marked by /// are very important for the understanding of the studied material and together they can serve a brief summary of a section. The text marked by italic indicates new or non-traditional concepts. Calculated examples are indicated by >. The main goal of Electronic Devices for Analog Signal Processing is not only to give some knowledge on modern electronic devices, but also to inspire readers on the more detailed study of these devices, understanding of their operation, ability to analyze circuits, synthesize new devices, and assess the possibilities of their application for solution of particular practical problems.
The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity Inside this book you will find a complete explanation of electronics that can be applied across a range of disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.
This book is dedicated to Prof. Dr. Heinz Gerhäuser on the occasion of his retirement both from the position of Executive Director of the Fraunhofer Institute for Integrated Circuits IIS and from the Endowed Chair of Information Technologies with a Focus on Communication Electronics (LIKE) at the Friedrich-Alexander-Universität Erlangen-Nürnberg. Heinz Gerhäuser's vision and entrepreneurial spirit have made the Fraunhofer IIS one of the most successful and renowned German research institutions. He has been Director of the Fraunhofer IIS since 1993, and under his leadership it has grown to become the largest of Germany's 60 Fraunhofer Institutes, a position it retains to this day, currently employing over 730 staff. Likely his most important scientific as well as application-related contribution was his pivotal role in the development of the mp3 format, which would later become a worldwide success. The contributions to this Festschrift were written by both Fraunhofer IIS staff and external project team members in appreciation of Prof. Dr. Gerhäuser's lifetime academic achievements and his inspiring leadership at the Fraunhofer IIS. The papers reflect the broad spectrum of the institute's research activities and are grouped into sections on circuits, information systems, visual computing, and audio and multimedia. They provide academic and industrial researchers in fields like signal processing, sensor networks, microelectronics, and integrated circuits with an up-to-date overview of research results that have a huge potential for cutting-edge industrial applications.
This book comprises select peer-reviewed papers from the International Conference on VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems (VSPICE-2020). The book provides insights into various aspects of the emerging fields in the areas Electronics and Communication Engineering as a holistic approach. The various topics covered in this book include VLSI, embedded systems, signal processing, communication, power electronics and internet of things. This book mainly focuses on the most recent innovations, trends, concerns and practical challenges and their solutions. This book will be useful for academicians, professionals and researchers in the area of electronics and communications and electrical engineering.
This introduction to elementary signal processing connects theory and application, and bridges instruction between a book and a CD-ROM packed with video, software and more. The result is a unique, non-mathematical learning system using concepts drawn from modern brain research. Readers use the popular DasyLab metrology and control engineering program to develop applications. Processing of real signals is enabled via the sound card and the parallel port. Two hundred pre-programmed signal engineering systems and design transparencies are provided on the CD-ROM. There are numerous videos, more than 250 photos, and - most important – all "living" experiments and their results are visualized.
With the rapid growth of wireless communications, this book meets the strong demand for information and new research in the area of antenna, signal processing, and microelectronics engineering. Providing an interdisciplinary platform, it brings together leading academicians, scientists, and researchers to share information on innovations, trends, and advances as well as the challenges encountered in this field. The chapters address the functional framework in the area of antenna, signal processing, and microelectronics engineering and explore the concepts from the basic to advanced level. Key features: • Addresses the functional framework in the area of antenna, signal processing, and microelectronics engineering • Covers the major challenges, issues, and advances in antennas, signal processing, and microelectronics engineering • Explores optimization techniques for smart antenna and microelectronics for different applications • Explores different materials and design techniques in the area of antennas and microelectronics
This is the only book that offers a thorough treatment of the following: design and application of programmable digital signal processors; formal specification and optimization of signal processing architectures and circuits; high-level synthesis of DSP architectures and datapaths; detailed treatment of application-specific integrated circuits (ASICs); scheduling, allocation and assignment algorithms for multiple processor DSP systems; and hardware/software co-design issues in DSP. VLSI Digital Signal Processors: An Introduction to Rapid Prototyping and Design Synthesis provides a cohesive, quantitative and clear exposition of the implementation and prototyping of digital signal processing algorithms on programmable signal processors, parallel processing systems and application-specific ICs. Included are both programmable and dedicated digital signal processors, and discussions of the latest optimization methods and the use of computer-aided-design techniques.