Microelectromechanical Structures for Materials Research

Microelectromechanical Structures for Materials Research

Author: Stuart B. Brown

Publisher:

Published: 1998

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK

Reports recent developments in a field that is coalescing but still lacks the coherence or certainty of a mature discipline in terms of accepted methodologies. The 39 papers discuss the resonance method as an attractive way to evaluate mechanical properties of thin gold films, heating effects on the Young's modulus of films sputtered onto micromachined resonators, test methods for characterizing piezoelectric thin films, polysilicon tensile testing with electrostatic gripping, silicon-based epitaxial films, and other aspects. Annotation copyrighted by Book News, Inc., Portland, OR


Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli

Publisher: Elsevier

Published: 2009-12-08

Total Pages: 670

ISBN-13: 0815519885

DOWNLOAD EBOOK

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures


The MEMS Handbook

The MEMS Handbook

Author: Mohamed Gad-el-Hak

Publisher: CRC Press

Published: 2001-09-27

Total Pages: 1386

ISBN-13: 9781420050905

DOWNLOAD EBOOK

The revolution is well underway. Our understanding and utilization of microelectromechanical systems (MEMS) are growing at an explosive rate with a worldwide market approaching billions of dollars. In time, microdevices will fill the niches of our lives as pervasively as electronics do right now. But if these miniature devices are to fulfill their mammoth potential, today's engineers need a thorough grounding in the underlying physics, modeling techniques, fabrication methods, and materials of MEMS. The MEMS Handbook delivers all of this and more. Its team of authors-unsurpassed in their experience and standing in the scientific community- explore various aspects of MEMS: their design, fabrication, and applications as well as the physical modeling of their operations. Designed for maximum readability without compromising rigor, it provides a current and essential overview of this fledgling discipline.


MEMS

MEMS

Author: Mohamed Gad-el-Hak

Publisher: CRC Press

Published: 2005-11-29

Total Pages: 494

ISBN-13: 1420036572

DOWNLOAD EBOOK

Thoroughly revised and updated, the new edition of the best-selling MEMS Handbook is now presented as a three-volume set that offers state-of-the-art coverage of microelectromechanical systems. The first volume, MEMS: Introduction and Fundamentals builds the required background and explores various physical considerations of MEMS. Topics include scaling, simulation models, the basics of control theory, and the physics of materials flow, thin liquid films, and bubble/drop transport. New chapters in this edition address lattice Boltzmann simulations and microscale hydrodynamics. Standing well on its own, this books builds an outstanding foundation for further exploration of MEMS and their applications.


Mems for Biomedical Applications

Mems for Biomedical Applications

Author: Shekhar Bhansali

Publisher: Elsevier

Published: 2012-07-18

Total Pages: 511

ISBN-13: 0857096273

DOWNLOAD EBOOK

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy


Mechanical Properties of Structural Films

Mechanical Properties of Structural Films

Author: Christopher L. Muhlstein

Publisher: ASTM International

Published: 2001

Total Pages: 333

ISBN-13: 0803128894

DOWNLOAD EBOOK

Recent advances in the mechanical properties of structural films are described in these papers from a November 2000 symposium held in Orlando, Florida. Papers are organized in sections on fracture and fatigue of structural films, elastic behavior and residual stress in thin films, tensile testing of


Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Author: Rebecca Cheung

Publisher: Imperial College Press

Published: 2006

Total Pages: 193

ISBN-13: 1860949096

DOWNLOAD EBOOK

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."


An Introduction to Microelectromechanical Systems Engineering

An Introduction to Microelectromechanical Systems Engineering

Author: Nadim Maluf

Publisher: Artech House

Published: 2004

Total Pages: 312

ISBN-13: 9781580535915

DOWNLOAD EBOOK

Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.


Advanced Structural Materials

Advanced Structural Materials

Author: Winston O. Soboyejo

Publisher: CRC Press

Published: 2006-12-21

Total Pages: 526

ISBN-13: 1420017462

DOWNLOAD EBOOK

A snapshot of the central ideas used to control fracture properties of engineered structural metallic materials, Advanced Structural Materials: Properties, Design Optimization, and Applications illustrates the critical role that advanced structural metallic materials play in aerospace, biomedical, automotive, sporting goods, and other indust