Seeming sometimes more like science fiction than science, anaerobic bacteria have been at the center of a number of exciting new discoveries. This volume discusses and explains the diversity of metabolism, modes of protein transport, molecular biology and physiology of these unusual microbes. It has practical applications ranging from wastewater treatment to clinical diagnosis and treatment of medical conditions.
A multi-disciplinary, multi-industry overview of microbiologically influenced corrosion, with strategies for diagnosis and control or prevention Microbiologically Influenced Corrosion helps engineers and scientists understand and combat the costly failures that occur due to microbiologically influenced corrosion (MIC). This book combines recent findings from diverse disciplines into one comprehensive reference. Complete with case histories from a variety of environments, it covers: Biofilm formation Causative organisms, relating bacteria and fungi to corrosion mechanisms for groups of metals Diagnosing and monitoring MIC Electrochemical techniques, with an overview of methods for detection of MIC The impact of alloying elements, including antimicrobial metals, and design features on MIC MIC of non-metallics Strategies for control or prevention of MIC, including engineering, chemical, and biological approaches This is a valuable, all-inclusive reference for corrosion scientists, engineers, and researchers, as well as designers, managers, and operators.
Microbial and Natural Macromolecules: Synthesis and Applications brings together active scientists and academicians in the field who share updated information and research outcomes from global experts. Microbial macromolecular diversity, molecular composure, genetics, usability of advanced molecular tools and techniques for their study as well as their applicability are discussed with detailed research perspectives. - Illustrates fundamental discoveries and methodological advancements - Discusses novel functional attributes of macromolecules - Updates progress on microbial macromolecular research
Significantly extended from the first edition, this book presents the basics of microbiologically influenced corrosion (MIC) in an accessible and concise manner. It explores strategies for recognizing, understanding, mitigating and preventing this type of corrosion, and investigates this topic from the point of view of an engineer. Chapters cover issues including stress corrosion cracking and microbial corrosion, the pros and cons of biocides, the involvement of magnetic bacteria in microbial corrosion, and cathodic protection based on recent research in microbial environments. The 2nd Edition provides new material examining the following topics: *The corrosion-related bacteria clostridia *Mathematical modelling of MIC, in particular fuzzy logic *A comparison of culture-independent methods with culture-dependent methods *Further practical strategies for dealing with MIC *Natural biocidesThis book has provided course material for the author’s microbial corrosion workshops around the world, and it presents an invaluable resource to corrosion and integrity professionals working in a wide range of industries including power generation, oil and gas, marine, and mining. It is also intended for students and academics of corrosion engineering, materials science, microbiology, chemical engineering and welding.
Biofouling is a costly problem, and it is encountered in a wide spectrum of technical systems, ranging from the shipping industry, power industry, water purification, automobile industry, paint and pharmaceuticals, to the microelectronics and food industries. Micro- and macroorganisms attach to surfaces and accumulate there, forming biofilms that cause interferences – a fundamentally natural process. Usually, a medical paradigm is applied: kill biofilms and the problem is solved. This leads to excessive biocide use. However, the success of this strategy is very limited; furthermore it leads to equipment damage and environmental pollution. Simply trying to kill the fouling organisms is clearly not seen as a successful strategy while cleaning is put forward as much more important. In this book, strategies to prevent adhesion, to mitigate the extent and effects of biofouling, and to detect and remove fouling layers are presented. Holistic approaches to the fouling process are elaborated, taking into account options such as nutrient limitation, repellent and easy-to-clean surfaces for fouling layer limitation, and replacing biocides with more environmentally friendly methods – in other words: learning how to live with fouling biofilms without suffering the damage they can do.
Alle relevanten Informationen zu Eisenoxiden, von der Struktur und Transformation über Charakterisierungsverfahren bis hin zu den neuesten AnwendungEN. Ein Muss für alle, die in dem Fachgebiet arbeiten.
Corrosion of Aluminium highlights the practical and general aspects of the corrosion of aluminium alloys with many illustrations and references. In addition to that, the first chapter allows the reader who is not very familiar with aluminium to understand the metallurgical, chemical and physical features of the aluminium alloys. The author Christian Vargel, has adopted a practitioner approach, based on the expertise and experience gained from a 40 year career in aluminium corrosion This approach is most suitable for assessing the corrosion resistance of aluminium- an assessment which is one of the main conditions for the development of many uses of aluminium in transport, construction, power transmission etc. - 600 bibliographic references provide a comprehensive guide to over 100 years of related study - Providing practical applications to the reader across many industries - Accessible to both the beginner and the expert
The Manual of Biocorrosion explains the microbiology, electrochemistry, and surface phenomena involved in biocorrosion and biofouling processes. Written primarily for non-specialists, the information in this manual is practical and offers a comprehensive look at the three components of biocorrosion: the microorganisms, the metal, and the aqueous environment. It also addresses methods for the monitoring, prevention, and control of biocorrosion. The first part of the book covers the fundamental aspects of microbiology, electrochemistry, and biofouling of metal surfaces. The second half describes biocorrosion assessment in the laboratory and the field, the main control and mitigation procedures used, practical case studies, and laboratory methods and formulations. The Manual of Biocorrosion is the book the industrial sector (water treatment plants, oil refineries, etc.) has been waiting for, providing the basics for implementing prevention, control, and mitigation procedures. In addition, it covers the latest industry trends with discussions of biocide selection, strategies for treating biocorrosion without harming the environment, and the latest monitoring programs. The academic sector will benefit as well from the up-to-date information on mechanisms and recent advances in all biocorrosion aspects and technology. Research trends such as the application of surface analysis techniques and modern electron microscopy, the use of conventional and innovative electrochemical techniques for assessment, and microbial inhibition of corrosion are all considered. Features 100 illustrations provide you with a visual understanding of the problems and techniques discussed 30 tables give you quick access to data 46 suggested readings provide references on books, conference and workshop proceedings, and special issues of scientific journals and technical publications specifically devoted to biocorrosion and biofouling 454 reference