This book presents in an easy-to-read format a summary of the important central aspects of microbial glycobiology, i.e. the study of carbohydrates as related to the biology of microorganisms. Microbial glycobiology represents a multidisciplinary and emerging area with implications for a range of basic and applied research fields, as well as having industrial, medical and biotechnological implications. - Individual chapters provided by leading international scientists in the field yield insightful, concise and stimulating reviews - Provides researchers with an overview and synthesis of the latest research - Each chapter begins with a brief 200 word Summary/Abstract detailing the topic and focus of the chapter, as well as the concepts to be addressed - Allows researchers to see at a glance what each chapter will cover - Each chapter includes a Research Focus Box - Identifies important problems that still need to be solved and areas that require further investigation
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Studies of the bacterial cell wall emerged as a new field of research in the early 1950s, and has flourished in a multitude of directions. This excellent book provides an integrated collection of contributions forming a fundamental reference for researchers and of general use to teachers, advanced students in the life sciences, and all scientists in bacterial cell wall research. Chapters include topics such as: Peptidoglycan, an essential constituent of bacterial endospores; Teichoic and teichuronic acids, lipoteichoic acids, lipoglycans, neural complex polysaccharides and several specialized proteins are frequently unique wall-associated components of Gram-positive bacteria; Bacterial cells evolving signal transduction pathways; Underlying mechanisms of bacterial resistance to antibiotics.
Along with nucleic acids, proteins, and lipids, carbohydrates stand as one of four main components of cellular architecture. However, glycobiology (or carbohydrate bioscience) is little understood by non-experts, partly because carbohydrates are a complex, diverse class of molecules structurally and functionally. In recent years, advances in computational analytics (glycomics) have allowed us to better interpret and realize the importance of glycobiology in human health and disease, and glycans and their associated processes have been shown to play a significant role across a variety of disease types. As the biomedical sciences continue to adopt multi-omic and precision medicine approaches, a greater understanding of glycobiology is essential for maintaining healthy physiology and advancing disease treatment.Translational Glycobiology in Human Health and Disease offers a deep examination of glycobiology for experts and non-experts alike in areas ranging from the role of glycobiology in chronic and infectious diseases to advances in technologies for higher throughput analysis and diagnosis. While keeping human health in the forefront, this book integrates a thorough discussion of glycobiology fundamentals with its growing areas of application and societal impact. With emphasis throughout on the interdisciplinary nature of glycosciences, this book also features perspectives from the health, computational (glycoanalytics), materials, biopharmaceutical, and diagnostic sciences.Disease and speciality areas addressed include gycoimmunology, neuroglycobiology, commensal glycobiology, gut health, regenerative medicine and glycobiology, glycobiology and cancer, congenital disorders of glycosylation, infectious disease glycobiology, and parasite glycobiology. Computational approaches discussed, supporting the advance of new research, include advanced glycoanalytics, glycomics microarrays, glycoengineering, and glycol systems biology. Additionally, authors consider impact areas for society and public health, such as glycobiology and entrepreneurship, policy and regulatory requirements for glycosylation, future research, and translation to new diagnostics and drug discovery. - Provides a deep, foundational overview of glycoscience and its translational potential, highlighting glycobiology's growing role in human health and disease study - Examines a broad range of relevant disease areas and applications of glycobiology in policy and public health - Features chapter contributions from leading, international experts in the field, fully integrating perspectives from the health, computational, materials, biopharmaceutical, and diagnostic sciences
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.
This volume provides a comprehensive understanding of the enigmatic identity of the glycome, a complex but important area of research that has been largely ignored due to its complexity. The authors thoroughly deal with almost all aspects of the glycome, i.e., elucidation of the glycan identity enigma and its role in regulation of the cellular process, and in disease etiology. The book bridges the knowledge gap in understanding the glycome, from being a cell signature to its applications in disease etiology. In addition, it details many of the major insights regarding the possible role of the glycome in various diseases as a therapeutic marker. The book systematically covers the major aspects of the glycome, including the significance of substituting the diverse monosaccharide units to glycoproteins, the role of glycans in disease pathologies, and the challenges and advances in glycobiology. The authors stress the significance and huge encoding power of carbohydrates as well as provide helpful insights in framing the bigger picture. The Glycome: Understanding the Diversity and Complexity of Glycobiology details state-of-the-art developments and emerging challenges of glycome biology, which are going to be key areas of future research, not only in the glycobiology field but also in pharmaceutics.
A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
The Perfect Slime presents the latest state of knowledge and all aspects of the Extracellular Polymeric Substances, (EPS) matrix – from the ecological and health to the antifouling perspectives. The book brings together all the current material in order to expand our understanding of the functions, properties and characteristics of the matrix as well as the possibilities to strengthen or weaken it. The EPS matrix represents the immediate environment in which biofilm organisms live. From their point of view, this matrix has paramount advantages. It allows them to stay together for extended periods and form synergistic microconsortia, it retains extracellular enzymes and turns the matrix into an external digestion system and it is a universal recycling yard, it protects them against desiccation, it allows for intense communication and represents a huge genetic archive. They can remodel their matrix, break free and eventually, they can use it as a nutrient source. The EPS matrix can be considered as one of the emergent properties of biofilms and are a major reason for the success of this form of life. Nevertheless, they have been termed the “black matter of biofilms” for good reasons. First of all: the isolation methods define the results. In most cases, only water soluble EPS components are investigated; insoluble ones such as cellulose or amyloids are much less included. In particular in environmental biofilms with many species, it is difficult to impossible isolate, separate the various EPS molecules they are encased in and to define which species produced which EPS. The regulation and the factors which trigger or inhibit EPS production are still very poorly understood. Furthermore: bacteria are not the only microorganisms to produce EPS. Archaea, Fungi and algae can also form EPS. This book investigates the questions, What is their composition, function, dynamics and regulation? What do they all have in common?
The second edition of a bestseller, this book provides a comprehensive reference for the cultivation of bacteria, Archaea, and fungi from diverse environments, including extreme habitats. Expanded to include 2,000 media formulations, this book compiles the descriptions of media of relevance for the cultivation of microorganisms from soil, water, an