Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors

Author: Cheol Seong Hwang

Publisher: Springer Science & Business Media

Published: 2013-10-18

Total Pages: 266

ISBN-13: 146148054X

DOWNLOAD EBOOK

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.


Spectroscopy of Complex Oxide Interfaces

Spectroscopy of Complex Oxide Interfaces

Author: Claudia Cancellieri

Publisher: Springer

Published: 2018-04-09

Total Pages: 326

ISBN-13: 3319749897

DOWNLOAD EBOOK

This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.


Lithium Niobate-Based Heterostructures

Lithium Niobate-Based Heterostructures

Author: SUMETS

Publisher: Iph001

Published: 2018-08-29

Total Pages: 0

ISBN-13: 9780750317276

DOWNLOAD EBOOK

With the use of ferroelectric materials in memory devices and the need for high-speed integrated optics devices, interest in ferroelectric thin films continues to grow. With their remarkable properties, such as energy nonvolatility, fast switching, radiative stability and unique optoacoustic and optoelectronic properties, Lithium Niobate-Based Heterostructures: Synthesis, properties and electron phenomena discusses why lithium niobate (LiNbO3) is one of the most promising of all ferroelectric materials. Based on years of study, this book presents the systematic characterization of substructure and electronic properties of a heterosystem formed in the deposition process of lithium niobate films onto the surface of silicon wafers.


Advanced Nano Deposition Methods

Advanced Nano Deposition Methods

Author: Yuan Lin

Publisher: John Wiley & Sons

Published: 2016-08-29

Total Pages: 328

ISBN-13: 3527696458

DOWNLOAD EBOOK

This concise reference summarizes the latest results in nano-structured thin films, the first to discuss both deposition methods and electronic applications in detail. Following an introduction to this rapidly developing field, the authors present a variety of organic and inorganic materials along with new deposition techniques, and conclude with an overview of applications and considerations for their technology deployment.


Handbook of Laser Micro- and Nano-Engineering

Handbook of Laser Micro- and Nano-Engineering

Author: KOJI SUGIOKA.

Publisher:

Published: 2019

Total Pages:

ISBN-13: 9783319695372

DOWNLOAD EBOOK

This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.


Surface and Thin Film Analysis

Surface and Thin Film Analysis

Author: Gernot Friedbacher

Publisher: Wiley-VCH

Published: 2011-06-07

Total Pages: 0

ISBN-13: 9783527320479

DOWNLOAD EBOOK

Surveying and comparing all techniques relevant for practical applications in surface and thin film analysis, this second edition of a bestseller is a vital guide to this hot topic in nano- and surface technology. This new book has been revised and updated and is divided into four parts - electron, ion, and photon detection, as well as scanning probe microscopy. New chapters have been added to cover such techniques as SNOM, FIM, atom probe (AP),and sum frequency generation (SFG). Appendices with a summary and comparison of techniques and a list of equipment suppliers make this book a rapid reference for materials scientists, analytical chemists, and those working in the biotechnological industry. From a Review of the First Edition (edited by Bubert and Jenett) "... a useful resource..." (Journal of the American Chemical Society)