Wide Bandgap Semiconductor Based Micro/Nano Devices

Wide Bandgap Semiconductor Based Micro/Nano Devices

Author: Jung-Hun Seo

Publisher: MDPI

Published: 2019-04-25

Total Pages: 138

ISBN-13: 3038978426

DOWNLOAD EBOOK

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.


Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set

Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set

Author: Marc J. Madou

Publisher: CRC Press

Published: 2018-12-14

Total Pages: 3817

ISBN-13: 1351990616

DOWNLOAD EBOOK

Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and NEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.


Wide Bandgap Semiconductor Electronics And Devices

Wide Bandgap Semiconductor Electronics And Devices

Author: Uttam Singisetti

Publisher: World Scientific

Published: 2019-12-10

Total Pages: 258

ISBN-13: 9811216495

DOWNLOAD EBOOK

'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.


Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

Author: Marc J. Madou

Publisher: CRC Press

Published: 2011-06-13

Total Pages: 658

ISBN-13: 1420055119

DOWNLOAD EBOOK

Providing a clear theoretical understanding of MEMS and NEMS, Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology focuses on nanotechnology and the science behind it, including solid-state physics. It provides a clear understanding of the electronic, mechanical, and optical properties of solids relied on in integrated circuits (ICs), MEMS, and NEMS. After exploring the rise of Si, MEMS, and NEMS in a historical context, the text discusses crystallography, quantum mechanics, the band theory of solids, and the silicon single crystal. It concludes with coverage of photonics, the quantum hall effect, and superconductivity. Fully illustrated in color, the text offers end-of-chapter problems, worked examples, extensive references, and a comprehensive glossary of terms. Topics include: Crystallography and the crystalline materials used in many semiconductor devices Quantum mechanics, the band theory of solids, and the relevance of quantum mechanics in the context of ICs and NEMS Single crystal Si properties that conspire to make Si so important Optical properties of bulk 3D metals, insulators, and semiconductors Effects of electron and photon confinement in lower dimensional structures How evanescent fields on metal surfaces enable the guiding of light below the diffraction limit in plasmonics Metamaterials and how they could make for perfect lenses, changing the photonic field forever Fluidic propulsion mechanisms and the influence of miniaturization on fluid behavior Electromechanical and optical analytical processes in miniaturized components and systems The first volume in Fundamentals of Microfabrication and Nanotechnology, Third Edition, Three-Volume Set, the book presents the electronic, mechanical, and optical properties of solids that are used in integrated circuits, MEMS, and NEMS and covers quantum mechanics, electrochemistry, fluidics, and photonics. It lays the foundation for a qualitative and quantitative theoretical understanding of MEMS and NEMS.


Wide Bandgap Semiconductor-based Electronics

Wide Bandgap Semiconductor-based Electronics

Author: Fan Ren

Publisher:

Published: 2020

Total Pages: 0

ISBN-13: 9780750325165

DOWNLOAD EBOOK

"Advances in wide bandgap semiconductor materials are enabling the development of a new generation of power semiconductor devices that far exceed the performance of silicon-based devices. These technologies offer potential breakthrough performance for a wide range of applications, including high-power and RF electronics, deep-UV optoelectronics, quantum information and extreme-environment applications. This reference text provides comprehensive coverage of the challenges and latest research in wide and ultra-wide bandgap semiconductors. Leading researchers from around the world provide reviews on the latest development of materials and devices in these systems. The book is an essential reference for researchers and practitioners in the field of wide bandgap semiconductors and power electronics, and valuable supplementary reading for advanced courses in these areas." -- Prové de l'editor.


Wide Band Gap Semiconductor Nanowires 1

Wide Band Gap Semiconductor Nanowires 1

Author: Vincent Consonni

Publisher: John Wiley & Sons

Published: 2014-08-08

Total Pages: 467

ISBN-13: 1118984307

DOWNLOAD EBOOK

GaN and ZnO nanowires can by grown using a wide variety of methods from physical vapor deposition to wet chemistry for optical devices. This book starts by presenting the similarities and differences between GaN and ZnO materials, as well as the assets and current limitations of nanowires for their use in optical devices, including feasibility and perspectives. It then focuses on the nucleation and growth mechanisms of ZnO and GaN nanowires, grown by various chemical and physical methods. Finally, it describes the formation of nanowire heterostructures applied to optical devices.


Wide Bandgap Semiconductor Materials and Devices 12

Wide Bandgap Semiconductor Materials and Devices 12

Author: J. A. Bardwell

Publisher: The Electrochemical Society

Published: 2011-04

Total Pages: 222

ISBN-13: 1566778670

DOWNLOAD EBOOK

This issue of ECS Transactions focuses on issues pertinent to development of wide-bandgap semiconductor materials and devices, encompassing inorganic wide-bandgap semiconductors: III-nitrides (e. g. gallium nitride), II-oxides, SiC, diamond, II-VI, and also emerging materials such as organic-inorganic nanoscale structures.


Wide Energy Bandgap Electronic Devices

Wide Energy Bandgap Electronic Devices

Author: Fan Ren

Publisher: World Scientific

Published: 2003

Total Pages: 526

ISBN-13: 9812382461

DOWNLOAD EBOOK

Presents state-of-the-art GaN and SiC electronic devices, as well as detailed applications of these devices to power conditioning, r. f. base station infrastructure and high temperature electronics.


Nanotechnology Abstracts

Nanotechnology Abstracts

Author: Eugene V. Dirote

Publisher: Nova Publishers

Published: 2002

Total Pages: 186

ISBN-13: 9781590334119

DOWNLOAD EBOOK

Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometre is a billionth of a metre, that is, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book presents carefully selected abstracts of the last 5 years in this frontier field. Special access is provide by author, title and subject indexes.