Numerical Approximation Methods

Numerical Approximation Methods

Author: Harold Cohen

Publisher: Springer Science & Business Media

Published: 2011-09-28

Total Pages: 493

ISBN-13: 1441998365

DOWNLOAD EBOOK

This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.


Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems

Author: Olaf Steinbach

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 392

ISBN-13: 0387688056

DOWNLOAD EBOOK

This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.


Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations

Author: Alfio Quarteroni

Publisher: Springer Science & Business Media

Published: 2009-02-11

Total Pages: 551

ISBN-13: 3540852689

DOWNLOAD EBOOK

Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).


Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

Published: 2016-06-02

Total Pages: 541

ISBN-13: 3319323547

DOWNLOAD EBOOK

Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.


Numerical Methods and Methods of Approximation in Science and Engineering

Numerical Methods and Methods of Approximation in Science and Engineering

Author: Karan S. Surana

Publisher: CRC Press

Published: 2018-10-31

Total Pages: 426

ISBN-13: 0429647867

DOWNLOAD EBOOK

Numerical Methods and Methods of Approximation in Science and Engineering prepares students and other readers for advanced studies involving applied numerical and computational analysis. Focused on building a sound theoretical foundation, it uses a clear and simple approach backed by numerous worked examples to facilitate understanding of numerical methods and their application. Readers will learn to structure a sequence of operations into a program, using the programming language of their choice; this approach leads to a deeper understanding of the methods and their limitations. Features: Provides a strong theoretical foundation for learning and applying numerical methods Takes a generic approach to engineering analysis, rather than using a specific programming language Built around a consistent, understandable model for conducting engineering analysis Prepares students for advanced coursework, and use of tools such as FEA and CFD Presents numerous detailed examples and problems, and a Solutions Manual for instructors


Numerical Approximation of Hyperbolic Systems of Conservation Laws

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Author: Edwige Godlewski

Publisher: Springer Nature

Published: 2021-08-28

Total Pages: 846

ISBN-13: 1071613448

DOWNLOAD EBOOK

This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.


Theory and Numerical Approximations of Fractional Integrals and Derivatives

Theory and Numerical Approximations of Fractional Integrals and Derivatives

Author: Changpin Li

Publisher: SIAM

Published: 2019-10-31

Total Pages: 327

ISBN-13: 1611975883

DOWNLOAD EBOOK

Due to its ubiquity across a variety of fields in science and engineering, fractional calculus has gained momentum in industry and academia. While a number of books and papers introduce either fractional calculus or numerical approximations, no current literature provides a comprehensive collection of both topics. This monograph introduces fundamental information on fractional calculus, provides a detailed treatment of existing numerical approximations, and presents an inclusive review of fractional calculus in terms of theory and numerical methods and systematically examines almost all existing numerical approximations for fractional integrals and derivatives. The authors consider the relationship between the fractional Laplacian and the Riesz derivative, a key component absent from other related texts, and highlight recent developments, including their own research and results. The core audience spans several fractional communities, including those interested in fractional partial differential equations, the fractional Laplacian, and applied and computational mathematics. Advanced undergraduate and graduate students will find the material suitable as a primary or supplementary resource for their studies.


Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

Published: 2015-01-19

Total Pages: 394

ISBN-13: 3319137972

DOWNLOAD EBOOK

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.


Approximation Theory and Methods

Approximation Theory and Methods

Author: M. J. D. Powell

Publisher: Cambridge University Press

Published: 1981-03-31

Total Pages: 356

ISBN-13: 9780521295147

DOWNLOAD EBOOK

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.


Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Author: B. Cockburn

Publisher: Springer

Published: 2014-03-12

Total Pages: 454

ISBN-13: 9783662164082

DOWNLOAD EBOOK

This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.