Methods in Theoretical Quantum Optics

Methods in Theoretical Quantum Optics

Author: Stephen Barnett

Publisher: Oxford University Press

Published: 2002-11-14

Total Pages: 302

ISBN-13: 9780198563617

DOWNLOAD EBOOK

This work presents the mathematical methods widely used by workers in the field of quantum optics. It deals with the physical assumptions which lead to the models and approximations employed, but the main purpose of the text is to give a firm grounding in those techniques needed to derive analytical solutions to problems.


Statistical Methods in Quantum Optics 1

Statistical Methods in Quantum Optics 1

Author: Howard J. Carmichael

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 384

ISBN-13: 3662038757

DOWNLOAD EBOOK

This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.


Mathematical Methods of Quantum Optics

Mathematical Methods of Quantum Optics

Author: Ravinder R. Puri

Publisher: Springer

Published: 2012-11-02

Total Pages: 291

ISBN-13: 3540449531

DOWNLOAD EBOOK

Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.


Statistical Methods in Quantum Optics 2

Statistical Methods in Quantum Optics 2

Author: Howard J. Carmichael

Publisher: Springer Science & Business Media

Published: 2009-04-25

Total Pages: 551

ISBN-13: 3540713204

DOWNLOAD EBOOK

This second volume of Howard Carmichael’s work continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in Volume 1. Written on a level suitable for debut researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems.


Quantum Optics

Quantum Optics

Author: Marlan O. Scully

Publisher: Cambridge University Press

Published: 1997-09-04

Total Pages: 664

ISBN-13: 9780521435956

DOWNLOAD EBOOK

An in-depth and wide-ranging introduction to the field of quantum optics.


Quantum Optics

Quantum Optics

Author: D.F. Walls

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 356

ISBN-13: 3642795048

DOWNLOAD EBOOK

Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.


A Group-Theoretical Approach to Quantum Optics

A Group-Theoretical Approach to Quantum Optics

Author: Andrei B. Klimov

Publisher: John Wiley & Sons

Published: 2009-08-04

Total Pages: 331

ISBN-13: 3527624015

DOWNLOAD EBOOK

Written by major contributors to the field who are well known within the community, this is the first comprehensive summary of the many results generated by this approach to quantum optics to date. As such, the book analyses selected topics of quantum optics, focusing on atom-field interactions from a group-theoretical perspective, while discussing the principal quantum optics models using algebraic language. The overall result is a clear demonstration of the advantages of applying algebraic methods to quantum optics problems, illustrated by a number of end-of-chapter problems. An invaluable source for atomic physicists, graduates and students in physics.


Nano and Quantum Optics

Nano and Quantum Optics

Author: Ulrich Hohenester

Publisher: Springer Nature

Published: 2019-12-18

Total Pages: 665

ISBN-13: 303030504X

DOWNLOAD EBOOK

This classroom-tested textbook is a modern primer on the rapidly developing field of quantum nano optics which investigates the optical properties of nanosized materials. The essentials of both classical and quantum optics are presented before embarking through a stimulating selection of further topics, such as various plasmonic phenomena, thermal effects, open quantum systems, and photon noise. Didactic and thorough in style, and requiring only basic knowledge of classical electrodynamics, the text provides all further physics background and additional mathematical and computational tools in a self-contained way. Numerous end-of-chapter exercises allow students to apply and test their understanding of the chapter topics and to refine their problem-solving techniques.


Semiconductor Quantum Optics

Semiconductor Quantum Optics

Author: Mackillo Kira

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 658

ISBN-13: 1139502514

DOWNLOAD EBOOK

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.


Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics

Author: Jin-Sheng Peng

Publisher: World Scientific

Published: 1998

Total Pages: 584

ISBN-13: 9789810234485

DOWNLOAD EBOOK

This book discusses quantum optics and investigates the quantum properties of interactions between atoms and laser fields. It is divided into three parts. Part I introduces the elementary theory of the interaction between atoms and light. Part II provides a concentrated discussion on the quantum properties of light fields. Part III deals with the quantum dynamic properties of the atoms interacting with laser fields. This book can be used as a text for both graduate and undergraduate students; it will also benefit scientists who are interested in quantum optics and theoretical physics.