A unique collection of hands-on enzyme assay techniques to study polyamines and their function. The techniques range from assay methods for enzymes of polyamine biosynthesis and catabolism to measurements of polyamines, polyamine transport, and polyamine effects on cell growth. The methods are presented by leading researchers who have perfected them to a high art, and include clear, step-by-step instructions with numerous hints and tips to ensure readily reproducible results.
Recently, important new findings in the polyamine field and a variety of new experimental systems have revolutionized the study of these ubiquitous cellular components, essential for normal growth and development. In Polyamines: Methods and Protocols, leading researchers contribute an extensive collection of up-to-date laboratory techniques for the further pursuit of polyamine study. The volume delves into vital subjects such as neoplasia studies with animal models and human patients, therapeutic roles for polyamine inhibitors and analogs, polyamine metabolism and oxidative damage, polyamines as regulators of critical ion channels, as well as polyamine transport systems and polyamine-responsive genes. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and expert notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Polyamines: Methods and Protocols provides a key resource for all scientists pursuing the study of this dynamic and significant aspect of cellular biology.
The purpose of Calpain Methods and Protocols is quite straightf- ward: it is to present the actual experimental methods used in many different laboratories for the study of calpain. It will provide the vital experimental detail, and the discussion of possible pitfalls, for which the standard journals no longer provide space. This will make it as easy as possible for investi- tors interested in calpain to adopt established methods without repeating old mistakes, and to adapt and apply these methods in novel approaches to the many outstanding calpain questions. These questions range from purely biochemical problems of protein structure and enzyme regulation at the molecular level, through large areas of cell biology, to applied and clinical aspects of calpain function in human d- ease. Within this panoply of topics, a wide range of investigators will find many fascinating and as yet unanswered questions about calpain. Calpain Methods and Protocols will provide instant access to many essential te- niques, while saving them the time and effort involved in developing a new method. In addition to questions relating to the normal physiological roles of the calpains, there is considerable evidence that inappropriate calpain activity may have pathological effects in many tissues, for example, following ischemia. This provides a major stimulus for the development of specific calpain inhi- tors for therapeutic purposes, and for the development of methods to evaluate such inhibitors.
Recent findings have revolutionized the study of these ubiquitous cellular components, essential for growth and development. Here, leading researchers contribute an extensive collection of up-to-date laboratory techniques that will enhance polyamine study.
Lorette Javois' timely new 2nd edition revises and updates her widely acclaimed collection of step-by-step immunocytochemical methods, one that is now used in many biological and biomedical research programs. The methods are designed for researchers and clinicians who wish to visualize molecules in plant or animal embryos, tissue sections, cells, or organelles. In addition to cutting-edge protocols for purifying and preparing antibodies, light microscopic analysis, confocal microscopy, FACS, and electron microscopy, this revised edition contains many new methods for applying immunocytochemical techniques in the clinical laboratory and in combination with in situ hybridization.
In Confocal Microscopy Methods and Protocols, Stephen Paddock and a highly skilled panel of experts lead the researcher using confocal techniques from the bench top, through the imaging process, to the journal page. They concisely describe all the key stages of confocal imaging-from tissue sampling methods, through the staining process, to the manipulation, presentation, and publication of the realized image. Written in a user-friendly, nontechnical style, the methods specifically cover most of the commonly used model organisms: worms, sea urchins, flies, plants, yeast, frogs, and zebrafish. Centered in the many biological applications of the confocal microscope, the book makes possible the successful imaging of both fixed and living specimens using primarily the laser scanning confocal microscope. The powerful hands-on methods collected in Confocal Microscopy Methods and Protocols will help even the novice to produce first-class cover-quality confocal images.
Robert Hall and a panel of expert researchers present a comprehensive collection of the most frequently used and broadly applicable techniques for plant cell and tissue culture. Readily reproducible and extensively annotated, the methods cover culture initiation, maintenance, manipulation, application, and long-term storage, with emphasis on techniques for genetic modification and micropropagation. Many of these protocols are currently used in major projects designed to produce improved varieties of important crop plants. Plant Cell Culture Protocols's state-of-the-art techniques are certain to make the book today's reference of choice, an indispensable tool in the development of new transgenic plants and full-scale commercial applications.
The book `Plant Analysis: Comprehensive Methods and Protocols' is a complete laboratory manual for analytical methods and techniques in the field of Agriculture, Plant Physiology, Biochemistry and related Plant Sciences. Right from nutrient analysis in plants, it covers estimations of macromolecules, such as amino acids, proteins, nucleic acids and metabolites of fatty acid metabolism. Protocols for the assay of various enzymes of nitrogen metabolism, ammonia assimilation, photosynthetic CO2-fixation, reactive oxygen species, carbohydrate, phosphorus and energy metabolism have been elucidated in the book. Special emphasis has also been given to techniques on specific topics such as Electrophoresis, Molecular Biology, Histo-enzymology, Symbiotic Nitrogen Fixation and assay of plant growth hormones. Thus the present book is one stop solution for all important techniques and analytical methods for students and research workers engaged in plant sciences and agricultural research.
The molecular characterization of RNA and its interactions with proteins is an important and exciting area of current research. Organisms utilize a variety of RNA–protein interactions to regulate the expression of their genes. This is particularly true for eukaryotes, since newly synthesized messenger RNA must be extensively modified and transported to the cytoplasm before it can be used for protein synthesis. The realization that posttranscriptional processes are critical components of gene regulation has sparked an explosion of interest in both stable ribonucleoprotein (RNP) complexes and transient RNA–protein interactions. RNA is conformationally flexible and can adopt complex structures that provide diverse surfaces for interactions with proteins. The fact that short RNA molecules (aptamers; see Chapter 16) can be selected to bind many different types of molecules is evidence of the structural variability of RNA. RNA molecules are rarely entirely single- or double-stranded, but usually contain multiple short duplexes interrupted by single-stranded loops and bulges; in some RNAs, such as tRNAs, the short duplexes stack on each other. Further variability is generated by the presence of non-Watson-Crick base pairs, modified nucleotides, and more complex structures, such as pseudoknots and triple-strand interactions.
The process whereby a single cell, the fertilized egg, develops into an adult has fascinated for centuries. Great progress in understanding that process, h- ever, has been made in the last two decades, when the techniques of molecular biology have become available to developmental biologists. By applying these techniques, the exact nature of many of the interactions responsible for forming the body pattern are now being revealed in detail. Such studies are a large, and it seems ever-expanding, part of most life-science groups. It is at newcomers to this field that this book is primarily aimed. A number of different plants and animals serve as common model org- isms for developmental studies. In Molecular Methods in Developmental Bi- ogy: Xenopus and Zebrafish, a range of the molecular methods applicable to two of these organisms are described, these are the South African clawed frog, Xenopus laevis, and the zebrafish, Brachydanio rerio. The embryos of both of these species develop rapidly and externally, making them particularly suited to investigations of early vertebrate development. However, both Xenopus and zebrafish have their own advantages and disadvantages. Xenopus have large, robust embryos that can be manipulated surgically with ease, but their pseudotetraploidy and long generation time make them unsuitable candidates for genetics. This disadvantage may soon be overcome by using the diploid Xenopus tropicalis, and early experiments are already underway. The transp- ent embryos of zebrafish render them well-suited for in situ hybridization and immunohistochemistry, and good for observing mutations in genetic screens.