Biomechanics of Sport and Exercise

Biomechanics of Sport and Exercise

Author: Peter M. McGinnis

Publisher: Human Kinetics

Published: 2020-01-10

Total Pages: 419

ISBN-13: 1492592293

DOWNLOAD EBOOK

A standout among introductory biomechanics texts, Biomechanics of Sport and Exercise, Fourth Edition With Web Resource, takes a unique approach to introducing exercise and sport biomechanics. Using simple terms, the book presents mechanics before functional anatomy, helping students first understand external forces and their effects on motion; then explores how the musculoskeletal system responds and generates its own internal forces to maintain position; and finally shows how to apply biomechanical principles to analyze movement and ultimately improve performance. The fourth edition expands its commitment to enabling students to discover the principles of biomechanics through observation. Easy-to-understand experiments are presented for students to try in the classroom or on their own. Sample problem sidebars guide students through choosing the appropriate equation to determine the forces acting or motion occurring in a specific scenario and then helps them solve the equation. This practical approach—combining clear illustrations, sample calculations, and encouragement for active learning—helps students develop a deeper understanding of the underlying mechanical concepts. In addition to careful updates throughout the book, other new enhancements in the fourth edition include the following: New content explores the technologies and devices available to coaches, athletes, and the general public to measure aspects of athletes’ movements. New full-color art and diagrams enhance the text and help students visualize mechanics in real-world scenarios. Explanations of the equations used in the text make the content more accessible to students. New concept application boxes provide deeper analysis of the field use of biomechanics, with topics such as the Magnus effect in baseball pitching, the wetsuit effect in triathlons, power output in cycling, centripetal acceleration when running a curve, and the work-energy principles in modern shot putting. Other learning aids include bold key terms, chapter objectives, and a guide to key equations and abbreviations. The chapters include a total of 18 sample problems that students can solve using a step-by-step process. A companion web resource offers additional review questions and problem sets. Biomechanics of Sport and Exercise, Fourth Edition, introduces the biomechanics of human movement in a clear and concise manner while promoting an active, engaged learning experience. Students will discover the principles of mechanics for themselves, resulting in a strong understanding of the subject matter.


Biomedical Engineering Principles of the Bionic Man

Biomedical Engineering Principles of the Bionic Man

Author: George K. Hung

Publisher: World Scientific

Published: 2010

Total Pages: 520

ISBN-13: 9812779779

DOWNLOAD EBOOK

The maturing of the baby boomers has heralded the age of the bionic man, who is literally composed of various replacement organs or biomechanical parts. This book provides a comprehensive and up-to-date scientific source of biomedical engineering principles of ?replacement parts and assist devices? for the bionic man. It contains topics ranging from biomechanical, biochemical, rehabilitation, and tissue engineering principles, to applications in cardiovascular, visual, auditory, and neurological systems, as well as recent advances in transplant, gene therapy, and stem cell research.


Biomechanics of Sport and Exercise

Biomechanics of Sport and Exercise

Author: Peter Merton McGinnis

Publisher: Human Kinetics

Published: 2005

Total Pages: 434

ISBN-13: 9780736051019

DOWNLOAD EBOOK

Biomechanics of Sport and Exercise, Second Edition, introduces exercise and sport biomechanics in concise terms rather than focusing on complex math and physics. This book helps students learn to appreciate external forces and their effects, how the body generates forces to maintain position, and how forces create movement in physical activities.


Biomedical Engineering Principles Of The Bionic Man (Second Edition)

Biomedical Engineering Principles Of The Bionic Man (Second Edition)

Author: George K Hung

Publisher: World Scientific

Published: 2023-01-19

Total Pages: 574

ISBN-13: 9811259208

DOWNLOAD EBOOK

This comprehensive compendium provides an up-to-date scientific source of biomedical engineering principles of 'replacement parts and assist devices' for the bionic man. It covers biomechanics, biochemistry, rehabilitation, tissue engineering, and sports science, as well as applications in cardiovascular, visual, auditory, and neurological systems.The useful reference text benefits students, scientists, and laymen keen in understanding the fundamental underlying principles of biomedical devices and procedures, along with recent advances in transplant methodology, gene therapy, stem cell research, and sports science.This unique volume provides numerous test questions in selected chapters with answers in the Appendix. Numerous color figures provide additional emphasis and vivacity to the written content.


Customized Artificial Implants: Bionic Design and Multiscale Evaluation

Customized Artificial Implants: Bionic Design and Multiscale Evaluation

Author: Zhenxian Chen

Publisher: Frontiers Media SA

Published: 2024-05-24

Total Pages: 185

ISBN-13: 2832549454

DOWNLOAD EBOOK

Artificial implants have been commonly used to replace or fix damaged tissue in orthopedics. However, due to the inter-individual differences and the complexities of anatomical structures and load conditions, traditional implants cannot meet the clinical requirements. In recent years, questions relating to customized artificial implants have been getting more and more attention from the research community. Challenges to implementing precision design and evaluation arise not only from the design need of considering bionic structures, kinematical function, mechanical performances, and biological functional similarity but also from the multiscale comprehensive evaluation, the latter involves biomechanics and biotribology of musculoskeletal systems from macro musculoskeletal multibody dynamics to micromechanics of porous structures. Established analysis technologies such as musculoskeletal multibody dynamics modeling and neuromusculoskeletal modeling are being well developed and evolved through combining/coupling with finite element analyses and, more recently, by novel artificial intelligence approaches.


The Stationary Bionic Wavelet Transform and its Applications for ECG and Speech Processing

The Stationary Bionic Wavelet Transform and its Applications for ECG and Speech Processing

Author: Talbi Mourad

Publisher: Springer Nature

Published: 2022-02-14

Total Pages: 95

ISBN-13: 3030934055

DOWNLOAD EBOOK

This book first details a proposed Stationary Bionic Wavelet Transform (SBWT) for use in speech processing. The author then details the proposed techniques based on SBWT. These techniques are relevant to speech enhancement, speech recognition, and ECG de-noising. The techniques are then evaluated by comparing them to a number of methods existing in literature. For evaluating the proposed techniques, results are applied to different speech and ECG signals and their performances are justified from the results obtained from using objective criterion such as SNR, SSNR, PSNR, PESQ , MAE, MSE and more.


Biomechanical Principles on Force Generation and Control of Skeletal Muscle and their Applications in Robotic Exoskeleton

Biomechanical Principles on Force Generation and Control of Skeletal Muscle and their Applications in Robotic Exoskeleton

Author: Yuehong Yin

Publisher: CRC Press

Published: 2019-09-05

Total Pages: 375

ISBN-13: 1000640000

DOWNLOAD EBOOK

This book systematically introduces the bionic nature of force sensing and control, the biomechanical principle on mechanism of force generation and control of skeletal muscle, and related applications in robotic exoskeleton. The book focuses on three main aspects: muscle force generation principle and biomechanical model, exoskeleton robot technology based on skeletal muscle biomechanical model, and SMA-based bionic skeletal muscle technology. This comprehensive and in-depth book presents the author's research experience and achievements of many years to readers in an effort to promote academic exchanges in this field. About the Author Yuehong Yin received his B.E. , M.S. and Ph.D. degrees from Nanjing University of Aeronautics and Astronautics, Nanjing, in 1990, 1995 and 1997, respectively, all in mechanical engineering. From December 1997 to December 1999, he was a Postdoctoral Fellow with Zhejiang University, Hangzhou, China, where he became an Associate Professor in July 1999. Since December 1999, he has been with the Robotics Institute, Shanghai Jiao Tong University, Shanghai, China, where he became a Professor and a Tenure Professor in December 2005 and January 2016, respectively. His research interests include robotics, force control, exoskeleton robot, molecular motor, artificial limb, robotic assembly, reconfigurable assembly system, and augmented reality. Dr. Yin is a fellow of the International Academy of Production Engineering (CIRP).


Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering

Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering

Author: Gerard A. Ateshian

Publisher: Springer Nature

Published: 2020-03-31

Total Pages: 672

ISBN-13: 3030431959

DOWNLOAD EBOOK

This book gathers selected, extended and revised contributions to the 16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, and the 4th Conference on Imaging and Visualization (CMBBE 2019), held on August 14-16, 2019, in New York City, USA. It reports on cutting-edge models and algorithms for studying various tissues and organs in normal and pathological conditions; innovative imaging and visualization techniques; and the latest diagnostic tools. Further topics addressed include: numerical methods, machine learning approaches, FEM models, and high-resolution imaging and real-time visualization methods applied for biomedical purposes. Given the scope of its coverage, the book provides graduate students and researchers with a timely and insightful snapshot of the latest research and current challenges in biomedical engineering, computational biomechanics and biological imaging, as well as a source of inspiration for future research and cross-disciplinary collaborations.


Biofabrication for Orthopedics

Biofabrication for Orthopedics

Author: Wenguo Cui

Publisher: John Wiley & Sons

Published: 2022-10-03

Total Pages: 792

ISBN-13: 3527831355

DOWNLOAD EBOOK

Biofabrication for Orthopedics A comprehensive overview of biofabrication techniques for orthopedics and their novel applications With an ever-increasing global population and the rise in the occurrence of orthopedic diseases amongst an aging population, it is essential for technological advances to meet this growing medical need. Orthopedic biofabrication is a cutting-edge field that seeks to produce novel clinical solutions to this mounting problem, through the incorporation of revolutionary technologies that have the potential to not only transform healthcare, but also provide highly automated and personalized patient solutions. With the advances in the discipline, there is a significant growing interest in biofabrication for orthopedics in research activity geared towards routine clinical use. Ideal for a broad readership amongst medical practitioners and scientists, Biofabrication for Orthopedics summarizes all aspects of the topic: detailed information on the technology, along with advanced developments, research progress, and future perspectives on biofabrication for orthopaedics—particularly on the potential applications for tissue engineering technologies. In doing so, the book describes the various biomaterials—natural and synthetic—use for orthopedics and discusses the many ways in which these materials can be used in all parts of the body. As such, it offers detailed information on a wide range of applications in the fields of biology and clinical and industrial manufacturing. Biofabrication for Orthopedics readers will also find: Insights into the applications of biofabrication technologies in various bodily functions Thorough discussion of different biofabrication techniques used in creating orthopedic products, like stereolithography, cell sheet and organ bioprinting, electrospinning, and microfluidics Discussion of a wide range of diverse functions, such as bone implants, skin regeneration, vascularization, meniscus remodeling, and more Biofabrication for Orthopedics is a useful reference for those in a variety of research fields like medical-related practitioners and scientists, materials science, medicine, and manufacturing, as well as the libraries who support them.