Metamaterials in Topological Acoustics

Metamaterials in Topological Acoustics

Author: Sourav Banerjee

Publisher: CRC Press

Published: 2023-10-13

Total Pages: 430

ISBN-13: 1000936538

DOWNLOAD EBOOK

Serves as a single resource on acoustic metamaterials and is the first book to discuss energy harvesting from metamaterials Covers the fundamentals of classical mechanics, quantum mechanics, and state-of-the-art condensed matter physics principles so that topological acoustics can be easily understood by engineers Introduces topological behaviors, acoustics hall effects, and applications Details smart materials and introduces different energy harvesting mechanisms for metamaterials followed by mechatronics packaging Explains the pros and cons of different design methods and gives guidelines for selecting specific designs of acoustic metamaterials with specific topological behaviors Includes MATLAB and Python code for numerical analysis


Acoustic Metamaterials

Acoustic Metamaterials

Author: Richard Craster

Publisher: Springer

Published: 2024-07-17

Total Pages: 0

ISBN-13: 9783031600142

DOWNLOAD EBOOK

The revised edition of this book offers an expanded review of acoustic metamaterials; novel materials which can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Updated chapters cover filtering effects, extraordinary transmission, sub-wavelength imaging via tomography or time-reversal techniques, cloaking via transformation acoustics, elastodynamics, and acoustic scattering cancellation. For this revised edition, three new chapters have been introduced to reflect developments in experimental acoustics and metasurfaces, resonators atop surfaces and elastic metamaterials. The broad scope gives the reader an overview of the state of the art in acoustic metamaterials research and an indication of future directions and applications. It will serve as a solid introduction to the field for advanced students, and a valuable reference for those working in metamaterials and related areas.


Fundamentals and Applications of Acoustic Metamaterials

Fundamentals and Applications of Acoustic Metamaterials

Author: Vicente Romero-Garcia

Publisher: John Wiley & Sons

Published: 2019-08-09

Total Pages: 281

ISBN-13: 1119649196

DOWNLOAD EBOOK

In the last few decades, metamaterials have revolutionized the ways in which waves are controlled, and applied in physics and practical situations. The extraordinary properties of metamaterials, such as their locally resonant structure with deep subwavelength band gaps and their ranges of frequency where propagation is impossible, have opened the way to a host of applications that were previously unavailable. Acoustic metamaterials have been able to replace traditional treatments in several sectors, due to their better performance in targeted and tunable frequency ranges with strongly reduced dimensions. This is a training book composed of nine chapters written by experts in the field, giving a broad overview of acoustic metamaterials and their uses. The book is divided into three parts, covering the state-of-the-art, the fundamentals and the real-life applications of acoustic metamaterials.


Acoustic Metamaterials and Phononic Crystals

Acoustic Metamaterials and Phononic Crystals

Author: Pierre A. Deymier

Publisher: Springer Science & Business Media

Published: 2013-01-13

Total Pages: 388

ISBN-13: 3642312322

DOWNLOAD EBOOK

This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.


Geometric Control of Fracture and Topological Metamaterials

Geometric Control of Fracture and Topological Metamaterials

Author: Noah Mitchell

Publisher: Springer Nature

Published: 2020-01-02

Total Pages: 129

ISBN-13: 3030363619

DOWNLOAD EBOOK

This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.


Computational Material Design Study of Acoustic Metamaterials and Structures by Topology Optimization

Computational Material Design Study of Acoustic Metamaterials and Structures by Topology Optimization

Author: David Roca Cazorla

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Acoustic metamaterials are artificially designed and manufactured structures with dy-namical properties that are not typically found in naturally-occurring materials. The design of acoustic metamaterials is considered to be in its infancy but is progressively emerging to provide both scientists and engineers with a wide range of practical appli-cations, mostly dealing with acoustic waves' manipulation, thus becoming a key ena-bling technology to overcome a number of the near future scientific and engineering challenges. At present, the design of acoustic metamaterials is mainly done with proce-dures based on experience and results obtained from theoretical studies which have a lack of real practical application. In this context, cutting-edge computational design tools such as multiscale modelling, model order reduction and multiobjective optimiza-tion techniques can play an important role to unravel the design of more sophisticated and efficient acoustic metamaterials. The aim of this project is to set up the basis for the future development of sophisticated numerical tools for the design of acoustic met-amaterials. In this sense, the results presented here can be regarded as examples to better understand the concept of acoustic metamaterials and considered a review of the currently existing models and numerical techniques available for studying them.


Graded Elastic Metamaterials for Energy Harvesting

Graded Elastic Metamaterials for Energy Harvesting

Author: Jacopo Maria De Ponti

Publisher: Springer Nature

Published: 2021-03-02

Total Pages: 130

ISBN-13: 3030690601

DOWNLOAD EBOOK

This book presents a complete framework for energy harvesting technologies based on graded elastic metamaterials. First, it provides a comprehensive survey of state-of-the-art research on metamaterials for energy harvesting and then explores the theoretical wave mechanics framework, going from inhomogeneous media to graded elastic metamaterials. The framework can be used to thoroughly analyse wave propagation phenomena in beams, plates, and half-spaces and to investigate the effect of local resonance on creating bandgaps or wave mode conversions. All these concepts converge together with piezoelectric materials in the study and design of piezo-augmented arrays of resonators. The energy harvesting performances of the graded metamaterials are then compared to conventional solutions, in order to quantify their advantages for applications.


New Acoustics Based on Metamaterials

New Acoustics Based on Metamaterials

Author: Woon Siong Gan

Publisher: Springer

Published: 2017-12-10

Total Pages: 321

ISBN-13: 9811063761

DOWNLOAD EBOOK

This book highlights the acoustical metamaterials’ capability to manipulate the direction of sound propagation in solids which in turn control the scattering, diffraction and refraction, the three basic mechanisms of sound propagation in solids. This gives rise to several novel theories and applications and hence the name new acoustics. As an introduction, the book mentions that symmetry of acoustic fields is the theoretical framework of acoustical metamaterials. This is then followed by describing that acoustical metamaterials began with locally resonant sonic materials which ushered in the concept of negative acoustic parameters such as mass density and bulk modulus. This complies with form invariance of the acoustic equation of motion which again exemplifies the symmetry property of acoustic fields.


Functional Metamaterials and Metadevices

Functional Metamaterials and Metadevices

Author: Xingcun Colin Tong

Publisher: Springer

Published: 2017-09-14

Total Pages: 288

ISBN-13: 3319660446

DOWNLOAD EBOOK

To meet the demands of students, scientists and engineers for a systematic reference source, this book introduces, comprehensively and in a single voice, research and development progress in emerging metamaterials and derived functional metadevices. Coverage includes electromagnetic, optical, acoustic, thermal, and mechanical metamaterials and related metadevices. Metamaterials are artificially engineered composites with designed properties beyond those attainable in nature and with applications in all aspects of materials science. From spatially tailored dielectrics to tunable, dynamic materials properties and unique nonlinear behavior, metamaterial systems have demonstrated tremendous flexibility and functionality in electromagnetic, optical, acoustic, thermal, and mechanical engineering. Furthermore, the field of metamaterials has been extended from the mere pursuit of various exotic properties towards the realization of practical devices, leading to the concepts of dynamically-reconfigurable metadevices and functional metasurfaces. The book explores the fundamental physics, design, and engineering aspects, as well as the full array of state-of-the-art applications to electronics, telecommunications, antennas, and energy harvesting. Future challenges and potential in regard to design, modeling and fabrication are also addressed.