Metamaterials-by-Design

Metamaterials-by-Design

Author: Andrea Alù

Publisher: Elsevier

Published: 2024-04-12

Total Pages: 402

ISBN-13: 0323983146

DOWNLOAD EBOOK

Metamaterials-by-Design: Theory, Technologies, and Vision is devoted to a comprehensive review of the latest advancements and current trends in the field of system-level-oriented metamaterial design methods, technologies, and future perspectives. Starting from the theoretical and methodological motivations of this research to macro-scale performance-driven design of volumetric and planar metamaterials, the book introduces advanced task-oriented modeling approaches, including specific reference to their multi-scale/ multi-physics customization in recent metamaterial science and engineering. In the introduction of these concepts, particular attention is paid to the illustration of the physical mechanisms and phenomena at the basis of the field manipulation capabilities enabled by metamaterials. Contributions from industry and academic perspectives on active and passive metamaterial-enhanced devices for communications and sensing are included. The final part of the volume is aimed at providing a perspective regarding the current trends, future research and application tracks in system-performance-driven metamaterial design methodologies and technologies, included potential applications in future reconfigurable and cognitive materials. Includes comprehensive review of the research developments, methodologies, and opportunities in the field of metamaterials-by-design Discusses new and emerging applications of metamaterials in microwave and terahertz spectrum, photonics, and optics scenarios Reviews performance-driven metamaterial design methodologies and technologies in communications and sensing


Metamaterials

Metamaterials

Author: Tie Jun Cui

Publisher: Springer Science & Business Media

Published: 2009-10-30

Total Pages: 376

ISBN-13: 1441905731

DOWNLOAD EBOOK

Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.


Numerical Methods for Metamaterial Design

Numerical Methods for Metamaterial Design

Author: Kenneth Diest

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 226

ISBN-13: 9400766645

DOWNLOAD EBOOK

This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromagnetic simulations or analytical solutions of the scattering problem. Throughout the text, we address the strengths and limitations of each method, as well as which numerical methods are best suited for different types of metamaterial designs. This book is intended to provide a detailed enough treatment of the mathematical methods used, along with sufficient examples and additional references, that senior level undergraduates or graduate students who are new to the fields of plasmonics, metamaterials, or optimization methods; have an understanding of which approaches are best-suited for their work and how to implement the methods themselves.


Engineered Materials and Metamaterials

Engineered Materials and Metamaterials

Author: Richard A. Dudley

Publisher: SPIE-International Society for Optical Engineering

Published: 2016-06-01

Total Pages:

ISBN-13: 9781510602151

DOWNLOAD EBOOK

"The field of metamaterials arose from a deeper understanding of how electromagnetic waves interact with materials and subwavelength-scaled scattering structures. This opened up the field of metamaterials or engineered materials through advances in understanding how material properties not found in nature could be designed along with advances in fabrication capabilities. Metamaterial advances span the electromagnetic spectrum, with examples being more common at lower (e.g., microwave) frequencies. The microwave or x-band regime has proven to be a good testbed for the first generation of metamaterials, but recently we have seen optical and IR metamaterials emerging as well. The exploitation of these more complex material-wave interactions, based on arrangements of subwavelength scale components, has generated a lot of global activity. We can, in principle, engineer material properties to greatly extend those currently available. This tutorial text presents both the usual and unusual electromagnetic properties of materials, focusing especially man-made or engineered metamaterials. After a review of Maxwell's equations and material properties, the idea of resonant meta-atoms and composite media are introduced. The fabrication of metamaterials and the properties of negative index materials are explained. The difficulties associated with reducing the size of meta-atoms for use at optical frequencies are described, and the use of metamaterials for superresolution imaging is presented in some detail"--


Dielectric Metamaterials

Dielectric Metamaterials

Author: Igal Brener

Publisher: Woodhead Publishing

Published: 2019-10-15

Total Pages: 310

ISBN-13: 0081024037

DOWNLOAD EBOOK

Dielectric Metamaterials: Fundamentals, Designs and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials. Highlights a crucial link in fundamental Mie scattering theory with the latest dielectric metamaterial research spanning materials, design and applications Includes coverage of wave-front engineering and 3D metamaterials Provides computational codes for calculating and simulating Mie resonances


Metamaterials with Negative Parameters

Metamaterials with Negative Parameters

Author: Ricardo Marqués

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 274

ISBN-13: 1118211561

DOWNLOAD EBOOK

The first general textbook to offer a complete overview of metamaterial theory and its microwave applications Metamaterials with Negative Parameters represents the only unified treatment of metamaterials available in one convenient book. Devoted mainly to metamaterials that can be characterized by a negative effective permittivity and/or permeability, the book includes a wide overview of the most important topics, scientific fundamentals, and technical applications of metamaterials. Chapter coverage includes: the electrodynamics of left-handed media, synthesis of bulk metamaterials, synthesis of metamaterials in planar technology, microwave applications of metamaterial concepts, and advanced and related topics, including SRR- and CSRR-based admittance surfaces, magneto- and electro-inductive waves, and sub-diffraction imaging devices. A list of problems and references is included at the end of each chapter, and a bibliography offers a complete, up-to-daterepresentation of the current state of the art in metamaterials. Geared toward students and professionals alike, Metamaterials with Negative Parameters is an ideal textbook for postgraduate courses and also serves as a valuable introductory reference for scientists and RF/microwave engineers.


Metamaterials

Metamaterials

Author: Pankaj K. Choudhury

Publisher: CRC Press

Published: 2021-11-05

Total Pages: 408

ISBN-13: 1000469298

DOWNLOAD EBOOK

Metamaterials have been in research limelight for the last few years owing to the exotic electromagnetic features these exhibit. With certain combinational forms of the design, these can be of prudent applications in developing antennas, filters, absorbers, sensors, energy harvesters, and many others. As such, the role of engineered mediums remains greatly important as the frequency region of operation determines the structure (of the medium(s)) to be developed – the fact that is exploited in the on-demand kind of tailoring the electromagnetic response of metamaterials. The relevant R&D investigators show keen interest in the fabrication of varieties of novel miniaturized devices that can be of great potentials in many micro- as well as nanotechnology-oriented applications. With this view point in mind, the Book provides the glimpse of phenomenal growth of research in this direction through covering the topics pivoted to fundamental descriptions, and theoretical and experimental results reported by pioneering scientists. It is expected that the book will be of benefit to novice researchers (such as graduate students) and expert scientists in universities and research laboratories. Some of the contents in the book are centered on industrial applications of metamaterials, thereby making the volume useful to the R&D scientists in certain industries. In summary, the book


Metamaterials for Antenna Applications

Metamaterials for Antenna Applications

Author: Amit K. Singh

Publisher: CRC Press

Published: 2021-09-12

Total Pages: 215

ISBN-13: 1000423816

DOWNLOAD EBOOK

The book presents an engineering approach for the development of metamaterials and metasurfaces with emphasis on application in antennas. It offers an in-depth study, performance analysis and extensive characterization on different types of metamaterials and metasurfaces. Practical examples included in the book will help readers to enhance performance of antennas and also develop metamaterial-based absorbers for a variety of applications. Key Features Provides background for design and development of metamaterial structures using novel unit cells Gives in-depth performance study of miniaturization of microstrip antennas Discusses design and development of both transmission and reflection types, metasurfaces and their practical applications. Verifies a variety of Metamaterial structures and Metasurfaces experimentally The target audience of this book is postgraduate students and researchers involved in antenna designs. Researchers and engineers interested in enhancing the performance of the antennas using metamaterials will find this book extremely useful. The book will also serve as a good reference for developing artificial materials using metamaterials and their practical applications. Amit K. Singh is Assistant Professor in the Department of Electrical Engineering at the Indian Institute of Technology Jammu, India. He is a Member of the IEEE, USA. Mahesh P. Abegaonkar is Associate Professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He is a Senior Member of the IEEE, USA. Shiban Kishen Koul is Emeritus Professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE).


Metamaterials

Metamaterials

Author: Nader Engheta

Publisher: John Wiley & Sons

Published: 2006-06-23

Total Pages: 438

ISBN-13: 0471784184

DOWNLOAD EBOOK

Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.


Metamaterials

Metamaterials

Author: Benedikt A. Munk

Publisher: John Wiley & Sons

Published: 2009-02-17

Total Pages: 209

ISBN-13: 0470423862

DOWNLOAD EBOOK

A Convincing and Controversial Alternative Explanation of Metamaterials with a Negative Index of Refraction In a book that will generate both support and controversy, one of the world's foremost authorities on periodic structures addresses several of the current fashions in antenna design—most specifically, the popular subject of double negative metamaterials. Professor Munk provides a comprehensive theoretical electromagnetic investigation of the issues and concludes that many of the phenomena claimed by researchers may be impossible. While denying the existence of negative refraction, the author provides convincing alternative explanations for some of the experimental examples in the literature. Although the debate on this subject is just beginning, Professor Munk has received support by various numerical simulations, winning him the encouragement of numerous experts in the field. The issues that are raised here have not been addressed thoroughly by the metamaterials community, and this book will serve as a catalyst for much healthy debate and discussion. Metamaterials: Critique and Alternatives is destined to become a classic resource for graduate students and researchers in electromagnetics, antenna theory, materials research, and chemistry.