Metamaterials

Metamaterials

Author: Pankaj K. Choudhury

Publisher: CRC Press

Published: 2021-11-05

Total Pages: 408

ISBN-13: 1000469298

DOWNLOAD EBOOK

Metamaterials have been in research limelight for the last few years owing to the exotic electromagnetic features these exhibit. With certain combinational forms of the design, these can be of prudent applications in developing antennas, filters, absorbers, sensors, energy harvesters, and many others. As such, the role of engineered mediums remains greatly important as the frequency region of operation determines the structure (of the medium(s)) to be developed – the fact that is exploited in the on-demand kind of tailoring the electromagnetic response of metamaterials. The relevant R&D investigators show keen interest in the fabrication of varieties of novel miniaturized devices that can be of great potentials in many micro- as well as nanotechnology-oriented applications. With this view point in mind, the Book provides the glimpse of phenomenal growth of research in this direction through covering the topics pivoted to fundamental descriptions, and theoretical and experimental results reported by pioneering scientists. It is expected that the book will be of benefit to novice researchers (such as graduate students) and expert scientists in universities and research laboratories. Some of the contents in the book are centered on industrial applications of metamaterials, thereby making the volume useful to the R&D scientists in certain industries. In summary, the book


An Introduction to Metamaterials and Waves in Composites

An Introduction to Metamaterials and Waves in Composites

Author: Biswajit Banerjee

Publisher: CRC Press

Published: 2011-06-07

Total Pages: 378

ISBN-13: 1439841578

DOWNLOAD EBOOK

Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally—the book encourages readers to explore these ideas and bring them to technological maturity.


Metamaterials and Their Applications

Metamaterials and Their Applications

Author: Dharani Sabba

Publisher: Arcler Press

Published: 2017-11

Total Pages: 0

ISBN-13: 9781773610535

DOWNLOAD EBOOK

Artificial materials such as metamaterials are gaining interest in research area in recent years owing to their extraordinary properties as implied by the word "Meta" meaning "beyond" in Greek. These metamaterials constitute periodic or nonperiodic subwavelength macro cells which exhibit properties based on the design of the macro units resulting in special materials that do not exist in nature. Though the metamaterials have achieved significant breakthroughs in theory, application of these materials requires considerable progress. Some recent advances in terms of their application comprise of revolutionary electronics, filtering of sound and light, biosensors, absorbers of electromagnetic radiation, antennas with improved performance, invisible submarines etc. These metamaterials are classified into electromagnetic (EM), chiral, tetrahertz, photonic metamaterials, tunable metamaterials with the ability to modify the frequency of refractive index, frequency selective surfaces and nonlinear metamaterials. EMs are chiefly used for optical and microwave applications such as band-pass filters, lenses, microwave couplers, antenna radomes, etc. Some of the salient characteristics of these materials are their ability to control the direction of electromagnetic radiation, achieve enhanced bandwidth and radiated power and reduce the beam-width and return loss in contrast to the conventional antennas.As the field of metamaterials is interesting and has potential for next generation applications, in this book, a compilation of research articles and reviews showcasing the synthesis, properties, numerical models and the application of these metamaterials in various fields has been illustrated. Chapters 1-6 are compilation of research and invited articles manifesting the various synthesis routes of metamaterials with chapters 4-6 focusing on the theoretical models used for the fabrication of these materials while chapters 7-9 highlight the properties of the metamaterials. The final chapters 10-17 acquaint the reader with the numerous applications of the metamaterials such as lens, absorber materials, sensors, antennas, etc. Chapter 11 is a review on the theory and application of tunable metamaterials. As this book comprises of research articles ranging from synthesis to numerical modeling of metamaterials, it will appeal to audience with strong inclination towards physics, computer simulations, material science and electronics. Also as these metamaterials are important in many defense applications, the reader will find this book compelling to research extensively and adopt these materials into advanced technologies for the safety and progress of one's nation.


Hyperbolic Metamaterials

Hyperbolic Metamaterials

Author: Igor I Smolyaninov

Publisher: Morgan & Claypool Publishers

Published: 2018-03-23

Total Pages: 81

ISBN-13: 1681745658

DOWNLOAD EBOOK

Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.


Metamaterials

Metamaterials

Author: Nader Engheta

Publisher: John Wiley & Sons

Published: 2006-06-23

Total Pages: 438

ISBN-13: 0471784184

DOWNLOAD EBOOK

Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.


Metamaterials

Metamaterials

Author: Tie Jun Cui

Publisher: Springer Science & Business Media

Published: 2009-10-30

Total Pages: 376

ISBN-13: 1441905731

DOWNLOAD EBOOK

Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.


Electromagnetic Metamaterials

Electromagnetic Metamaterials

Author: Christophe Caloz

Publisher: John Wiley & Sons

Published: 2005-11-22

Total Pages: 352

ISBN-13: 0471754315

DOWNLOAD EBOOK

Electromagnetic metamaterials-from fundamental physics to advanced engineering applications This book presents an original generalized transmission line approach associated with non-resonant structures that exhibit larger bandwidths, lower loss, and higher design flexibility. It is based on the novel concept of composite right/left-handed (CRLH) transmission line metamaterials (MMs), which has led to the development of novel guided-wave, radiated-wave, and refracted-wave devices and structures. The authors introduced this powerful new concept and are therefore able to offer readers deep insight into the fundamental physics needed to fully grasp the technology. Moreover, they provide a host of practical engineering applications. The book begins with an introductory chapter that places resonant type and transmission line metamaterials in historical perspective. The next six chapters give readers a solid foundation in the fundamentals and practical applications: Fundamentals of LH MMs describes the fundamental physics and exotic properties of left-handed metamaterials TL Theory of MMs establishes the foundations of CRLH structures in three progressive steps: ideal transmission line, LC network, and real distributed structure Two-Dimensional MMs develops both a transmission matrix method and a transmission line method to address the problem of finite-size 2D metamaterials excited by arbitrary sources Guided-Wave Applications and Radiated-Wave Applications present a number of groundbreaking applications developed by the authors The Future of MMs sets forth an expert view on future challenges and prospects This engineering approach to metamaterials paves the way for a new generation of microwave and photonic devices and structures. It is recommended for electrical engineers, as well as physicists and optical engineers, with an interest in practical negative refractive index structures and materials.


Metamaterials for Antenna Applications

Metamaterials for Antenna Applications

Author: Amit K. Singh

Publisher: CRC Press

Published: 2021-09-12

Total Pages: 215

ISBN-13: 1000423816

DOWNLOAD EBOOK

The book presents an engineering approach for the development of metamaterials and metasurfaces with emphasis on application in antennas. It offers an in-depth study, performance analysis and extensive characterization on different types of metamaterials and metasurfaces. Practical examples included in the book will help readers to enhance performance of antennas and also develop metamaterial-based absorbers for a variety of applications. Key Features Provides background for design and development of metamaterial structures using novel unit cells Gives in-depth performance study of miniaturization of microstrip antennas Discusses design and development of both transmission and reflection types, metasurfaces and their practical applications. Verifies a variety of Metamaterial structures and Metasurfaces experimentally The target audience of this book is postgraduate students and researchers involved in antenna designs. Researchers and engineers interested in enhancing the performance of the antennas using metamaterials will find this book extremely useful. The book will also serve as a good reference for developing artificial materials using metamaterials and their practical applications. Amit K. Singh is Assistant Professor in the Department of Electrical Engineering at the Indian Institute of Technology Jammu, India. He is a Member of the IEEE, USA. Mahesh P. Abegaonkar is Associate Professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He is a Senior Member of the IEEE, USA. Shiban Kishen Koul is Emeritus Professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE).


Fundamentals and Applications of Acoustic Metamaterials

Fundamentals and Applications of Acoustic Metamaterials

Author: Vicente Romero-Garcia

Publisher: John Wiley & Sons

Published: 2019-08-08

Total Pages: 326

ISBN-13: 1119649161

DOWNLOAD EBOOK

In the last few decades, metamaterials have revolutionized the ways in which waves are controlled, and applied in physics and practical situations. The extraordinary properties of metamaterials, such as their locally resonant structure with deep subwavelength band gaps and their ranges of frequency where propagation is impossible, have opened the way to a host of applications that were previously unavailable. Acoustic metamaterials have been able to replace traditional treatments in several sectors, due to their better performance in targeted and tunable frequency ranges with strongly reduced dimensions. This is a training book composed of nine chapters written by experts in the field, giving a broad overview of acoustic metamaterials and their uses. The book is divided into three parts, covering the state-of-the-art, the fundamentals and the real-life applications of acoustic metamaterials.


Metamaterials and Plasmonics: Fundamentals, Modelling, Applications

Metamaterials and Plasmonics: Fundamentals, Modelling, Applications

Author: Said Zouhdi

Publisher: Springer Science & Business Media

Published: 2008-12-16

Total Pages: 300

ISBN-13: 1402094078

DOWNLOAD EBOOK

Metamaterials and plasmonics are cross-disciplinary fields that are emerging into the mainstream of many scientific areas. Examples of scientific and technical fields which are concerned are electrical engineering, micro- and nanotechnology, microwave engineering, optics, optoelectronics, and semiconductor technologies. In plasmonics, the interplay between propagating electromagnetic waves and free-electron oscillations in materials are exploited to create new components and applications. On the other hand, metamaterials refer to artificial composites in which small artificial elements, through their collective interaction, creates a desired and unexpected macroscopic response function that is not present in the constituent materials. This book charts the state of the art of these fields. In May 2008, world-leading experts in metamaterials and plasmonics gathered into a NATO Advanced Research Workshop in Marrakech, Morocco. The present book contains extended versions of 22 of the presentations held in the workshop, covering the general aspects of the field, as well as design and modelling questions of plasmonics and metamaterials, fabrication issues, and applications like absorbers and antennas.