Handbook of Non-Ferrous Metal Powders

Handbook of Non-Ferrous Metal Powders

Author: Oleg D Neikov

Publisher: Elsevier

Published: 2009-02-24

Total Pages: 644

ISBN-13: 0080559409

DOWNLOAD EBOOK

The manufacture and use of the powders of non-ferrous metals has been taking place for many years in what was previously Soviet Russia, and a huge amount of knowledge and experience has built up in that country over the last forty years or so. Although accounts of the topic have been published in the Russian language, no English language account has existed until now.Six prominent academics and industrialists from the Ukraine and Russia have produced this highly-detailed account which covers the classification, manufacturing methods, treatment and properties of the non-ferrous metals ( aluminium, titanium, magnesium, copper, nickel, cobalt, zinc, cadmium, lead, tin, bismuth, noble metals and earth metals).The result is a formidable reference source for those in all aspects of the metal powder industry. - Covers the manufacturing methods, properties and importance of the following metals: aluminium, titanium, magnesium, copper, nickel, cobalt, zinc, cadmium, noble metals, rare earth metals, lead, tin and bismuth - Expert Russian team of authors, all very experienced - English translation and update of book previously published in Russian


Metals Powders

Metals Powders

Author: Francisco P. Gómez Cuevas

Publisher: MDPI

Published: 2020-07-01

Total Pages: 134

ISBN-13: 3039360620

DOWNLOAD EBOOK

This book gathers several manuscripts dealing with powder metallurgy processing. Both powders production and their processing to reach a final product can be found. In particular, the extraction of Ta and Ti powders from their oxides by the action of Mg is studied. Moreover, the synthesis of ball-milled Mn-Bi powder for magnetic uses is also presented in the book. Regarding powders processing, sintering of Fe-Co-Cu powder mixtures for their use as diamond impregnated tools, electrical resistance sintering of mechanically alloyed amorphous Al-Ti powders, cold pressed Fe-Si-B alloys with magnetic uses, hot extruded functionally graded Al-based materials, space holder sintering of Ti for medical implants, sintering of hard Co-based material, and electrical resistance sintering of Fe-WC hardmetals can be found in this book.


Fundamentals of Laser Powder Bed Fusion of Metals

Fundamentals of Laser Powder Bed Fusion of Metals

Author: Igor Yadroitsev

Publisher: Elsevier

Published: 2021-05-23

Total Pages: 678

ISBN-13: 0128240911

DOWNLOAD EBOOK

Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient performance to be qualified in end-use mission-critical applications. After decades of research and development, laser powder bed fusion is now enabling a new era of digitally driven manufacturing. Fundamentals of Laser Powder Bed Fusion of Metals will provide the fundamental principles in a broad range of topics relating to metal laser powder bed fusion. The target audience includes new users, focusing on graduate and undergraduate students; however, this book can also serve as a reference for experienced users as well, including senior researchers and engineers in industry. The current best practices are discussed in detail, as well as the limitations, challenges, and potential research and commercial opportunities moving forward. - Presents laser powder bed fusion fundamentals, as well as their inherent challenges - Provides an up-to-date summary of this advancing technology and its potential - Provides a comprehensive textbook for universities, as well as a reference for industry - Acts as quick-reference guide


Electrochemical Production of Metal Powders

Electrochemical Production of Metal Powders

Author: Stojan S. Djokić

Publisher: Springer Science & Business Media

Published: 2012-03-24

Total Pages: 412

ISBN-13: 1461423805

DOWNLOAD EBOOK

This new volume of Modern Aspects of Electrochemistry reviews different methods for the production of metal powders including mechanical, chemical and electrochemical powders. Electrochemically produced metal powders are of high purity and they are extremely active during sintering. These powders find a wide-range of applications in automotive, aerospace, energy device and electronics industries.


Metal Oxide Powder Technologies

Metal Oxide Powder Technologies

Author: Yarub Al-Douri

Publisher: Elsevier

Published: 2020-06-02

Total Pages: 454

ISBN-13: 0128175060

DOWNLOAD EBOOK

Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications reviews the fundamentals, processing methods and applications of this key materials system. Topics addressed comprehensively cover chemical and physical properties, synthesis, preparation, both accepted and novel processing methods, modeling and simulation. The book provides fundamental information on the key properties that impact performance, such as particle size and crystal structure, along with methods to measure, analyze and evaluate. Finally, important applications are covered, including biomedical, energy, electronics and materials applications. - Provides a comprehensive overview of key topics both on the theoretical side and the experimental - Discusses important properties that impact metal oxide performance, processing methods (both novel and accepted), and important applications - Reviews the most relevant applications, such as biomedical, energy, electronics and materials applications


Advances in Powder Metallurgy

Advances in Powder Metallurgy

Author: Isaac Chang

Publisher: Elsevier

Published: 2013-08-31

Total Pages: 624

ISBN-13: 085709890X

DOWNLOAD EBOOK

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques


Densification of Metal Powders During Sintering

Densification of Metal Powders During Sintering

Author: V. A. Invenson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 241

ISBN-13: 1475701063

DOWNLOAD EBOOK

Sintering of powder metal compacts is one of the basic oper ations in powder metallurgy. The useful properties of a machine part are obtained after considerable densification of the sintered material. Although the mechanical properties of the part depend on other structural factors besides porosity, porosity is the main factor. Usually, the practical problem in sintering is to obtain a part with the desired or permissible porosity. Thus, knowledge of the laws governing densification and its final result is neces sary to control this process in the production of powder metal parts. The laws governing densification are also important for a more exact physical theory of sintering, which is still in the initial stages of its development. Such processes as the change in the density of lattice defects and the flow of crystalline substances during sintering have not yet received a complete physical inter pretation. Analysis of the laws of sintering may provide addition al material for more complete phenomenological characteristics of these processes that will be useful for further development of theoretical concepts of the flow of imperfect crystals under small loads. Although a substantial amount of experimental material has been accumulated, generalizations are still difficult.


Metal Powders

Metal Powders

Author: Joseph M. Capus

Publisher: Elsevier

Published: 2000

Total Pages: 198

ISBN-13: 9781856173711

DOWNLOAD EBOOK

This third edition of Metal Powders: A Global Survey of Production, Applications and Markets has been completely revised and updated to include information available up to mid-June 2000. The main purpose of the report is to review the manufacture, applications and markets for the metal and alloy powders of most commercial significance. As a result, the bulk of the report deals with ferrous powders (iron and steel, stainless steels and high alloy tool steels). Most of the non-ferrous metals and alloys are also reviewed, including aluminium, copper, nickel, cobalt, and the refractory metals tungsten and molybdenum. For a PDF version of the report please call Tina Enright on +44 (0) 1865 843008 for price details.


Powder Metallurgy of Iron and Steel

Powder Metallurgy of Iron and Steel

Author: Randall M. German

Publisher: Wiley-Interscience

Published: 1998-03-31

Total Pages: 528

ISBN-13:

DOWNLOAD EBOOK

A comprehensive guide to current practices Powder metallurgy processes increasingly dominate the production of iron and steel components for a variety of machines, appliances, automobiles, and tools. These processes yield high-quality precision components, recycle scrap metals into useful powders, and consume less energy than traditional manufacturing methods. Despite the tremendous growth in this area, however, until now there has been no guide on practical issues in the field. Powder Metallurgy of Iron and Steel fills the need for a fundamental, nonmathematical treatment of this technology. Focusing on the most useful applications and the advantages of different production techniques, this systematic, self-contained volume provides serious help in tackling production problems on the factory floor. It covers the gamut of practical topics, from injection molding and compaction processes to sintering, full-density processes, heat treatments, finishing operations, and the mechanical properties of many products, including die-compacted steels. Written by a leading authority and designer of educational programs for the industry, Powder Metallurgy of Iron and Steel: Emphasizes current practices and real engineering materials in everyday manufacturing processes Keeps the mathematics simple, boxing the calculations outside the main body of text Includes research articles and trade information from a variety of sources Features numerous pictures and flow diagrams Includes an appendix with an extensive list of definitions This important tutorial for an expanding work force is accessible to scientists and engineers alike, as well as technicians, production supervisors, designers, consultants, and marketing personnel. It is also an excellent textbook for undergraduate and industrial courses.