Metallic systems are ubiquitous in daily life. They play key roles, for example, in the chemistry of many biomolecules, ionic solutions, nanoparticles, and catalytic processes. They may be in solid, liquid, or gaseous form. The interactions of other molecules with metal surfaces are of considerable importance. Each of these topics is addressed in M
The second edition of this textbook, popular amongst students and faculty alike, investigates the various causes of thermodynamic instability in metallic microstructures. Materials theoretically well designed for a particular application may prove inefficient or even useless unless stable under normal working conditions. The authors examine current experimental and theoretical understanding of the kinetics behind structural change in metals. The entire text has been updated in this new edition, and a completely new chapter on highly metastable alloys has been added. The degree to which kinetic stability of the material outweighs its thermodynamic instability is very important, and dictates the useful working life of the material. If the structure is initially produced to an optimum, such changes will degrade the properties of the material. This comprehensive and well-illustrated text, accompanied by ample references, will allow final year undergraduates, graduate students and research workers to investigate in detail the stability of microstructure in metallic systems.
The common belief is that light is completely reflected by metals. In reality they also exhibit an amazing property that is not so widely known: under some conditions light flows along a metallic surface as if it were glued to it. Physical phenomena related to these light waves, which are called Surface Plasmon Polaritons (SPP), have given rise to the research field of plasmonics. This thesis explores four interesting topics within plasmonics: extraordinary optical transmission, negative refractive index metamaterials, plasmonic devices for controlling SPPs, and field enhancement phenomena near metal nanoparticles.
The NATO Advanced Research Workshop took place from 29 May to I June 2000 in the picturesque Hungarian town of Pecs, 220 km south of Budapest. The main goal of the workshop was to review and promote experimental and theoretical research on the problem of Kondo-type scatteringofthe electrons in systems ofreduced dimensionalities. 53 regular participants and 7 observers from 17 different countries attended the workshop. The Kondo effect has been a topic ofintense interest for many years, due in part to its relevance to a variety of other branches of condensed matter physics. In addition to the best known example of magnetic impurities in noble metals, the physics of the Kondo effect is important in many areas of current research, including heavy-fermion physics, correlated electron systems, and high-temperature superconductivity. Of central importance in this problem is the interaction of conduction electrons in the metal with individual magnetic impurities, an interaction which also mediates the interaction ofthe impurities with each other.
This book provides an in-depth understanding of the nature of surface states and, in particular, their relevance to the physics and chemistry of metallic surfaces. Recent experiments reveal that surface states play a key role in a wide variety of surface phenomena. Individual chapters examine the contribution of surface states to reconstruction, non-adiabatic vibrational damping, nonlinear optical response, tunneling, interaction potentials for scattering and physisorption, as well as surface and thin-film magnetism. Altogether they provide an overview of this rapidly developing field.
Smithells is the only single volume work which provides data on all key apsects of metallic materials.Smithells has been in continuous publication for over 50 years. This 8th Edition represents a major revision.Four new chapters have been added for this edition. these focus on; * Non conventional and emerging materials - metallic foams, amorphous metals (including bulk metallic glasses), structural intermetallic compounds and micr/nano-scale materials. * Techniques for the modelling and simulation of metallic materials. * Supporting technologies for the processing of metals and alloys.* An Extensive bibliography of selected sources of further metallurgical information, including books, journals, conference series, professional societies, metallurgical databases and specialist search tools.* One of the best known and most trusted sources of reference since its first publication more than 50 years ago* The only single volume containing all the data needed by researchers and professional metallurgists* Fully updated to the latest revisions of international standards
This work presents a step-by-step procedure for determining the most suitable piping material for any given situation. It describes all corrosion-resistant piping systems - including thermoset and thermoplastic, lined and metallic systems and miscellaneous systems such as glass, carbon and clay. A compatibility table for each piping system, compiling the corrosion resistance of over 175 common corrodents, is provided.