This book highlights cyclization via carbopalladation and acylpalladation and Heck-pericyclic sequences. They discuss p-allyl palladium-based cascade reactions, Michael-type additions as an entry to transition-metal-promoted cyclizative transformations, and sequential or consecutive palladium-catalyzed processes, and show Pauson-Khand cascades, metal-catalyzed cyclizations of acyclic precursors, as well as cascade and sequential ruthenium-catalyzed transformations. This is a comprehensive overview of an exciting and highly dynamic, and innovative methodological concept.
Demonstrates the advantages of catalytic cascade reactions for synthesizing natural products and pharmaceuticals Riding the wave of green chemistry, catalytic cascade reactions have become one of the most active research areas in organic synthesis. During a cascade reaction, just one reaction solvent, one workup procedure, and one purification step are needed, thus significantly increasing synthetic efficiency. Featuring contributions from an international team of pioneers in the field, Catalytic Cascade Reactions demonstrates the versatility and application of these reactions for synthesizing valuable compounds. The book examines both organocatalysis and transition-metal catalysis reactions, bringing readers up to date with the latest discoveries and activities in all major areas of catalytic cascade reaction research. Catalytic Cascade Reactions begins with three chapters dedicated to organocatalytic cascade reactions, exploring amines, Brønsted acids, and the application of organocatalytic cascade reactions in natural product synthesis and drug discovery. Next, the book covers: Gold-catalyzed cascade reactions Cascade reactions catalyzed by ruthenium, iron, iridium, rhodium, and copper Palladium-catalyzed cascade reactions of alkenes, alkynes, and allenes Application of transition-metal catalyzed cascade reactions in natural product synthesis and drug discovery Engineering mono- and multifunctional nanocatalysts for cascade reactions Multiple-catalyst-promoted cascade reactions All chapters are thoroughly referenced, providing quick access to important original research findings and reviews so that readers can explore individual topics in greater depth. Drawing together and analyzing published findings scattered across the literature, this book provides a single source that encapsulates our current understanding of catalytic cascade processes. Moreover, it sets the stage for the development of new catalytic cascade reactions and their applications.
Demonstrates the advantages of catalytic cascade reactions for synthesizing natural products and pharmaceuticals Riding the wave of green chemistry, catalytic cascade reactions have become one of the most active research areas in organic synthesis. During a cascade reaction, just one reaction solvent, one workup procedure, and one purification step are needed, thus significantly increasing synthetic efficiency. Featuring contributions from an international team of pioneers in the field, Catalytic Cascade Reactions demonstrates the versatility and application of these reactions for synthesizing valuable compounds. The book examines both organocatalysis and transition-metal catalysis reactions, bringing readers up to date with the latest discoveries and activities in all major areas of catalytic cascade reaction research. Catalytic Cascade Reactions begins with three chapters dedicated to organocatalytic cascade reactions, exploring amines, Brønsted acids, and the application of organocatalytic cascade reactions in natural product synthesis and drug discovery. Next, the book covers: Gold-catalyzed cascade reactions Cascade reactions catalyzed by ruthenium, iron, iridium, rhodium, and copper Palladium-catalyzed cascade reactions of alkenes, alkynes, and allenes Application of transition-metal catalyzed cascade reactions in natural product synthesis and drug discovery Engineering mono- and multifunctional nanocatalysts for cascade reactions Multiple-catalyst-promoted cascade reactions All chapters are thoroughly referenced, providing quick access to important original research findings and reviews so that readers can explore individual topics in greater depth. Drawing together and analyzing published findings scattered across the literature, this book provides a single source that encapsulates our current understanding of catalytic cascade processes. Moreover, it sets the stage for the development of new catalytic cascade reactions and their applications.
This book highlights cyclization via carbopalladation and acylpalladation and Heck-pericyclic sequences. They discuss p-allyl palladium-based cascade reactions, Michael-type additions as an entry to transition-metal-promoted cyclizative transformations, and sequential or consecutive palladium-catalyzed processes, and show Pauson-Khand cascades, metal-catalyzed cyclizations of acyclic precursors, as well as cascade and sequential ruthenium-catalyzed transformations. This is a comprehensive overview of an exciting and highly dynamic, and innovative methodological concept.
Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Carboamination or Carboalkoxylation Reactions, by John P. Wolfe Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Diamination, Aminoalkoxylation, or Dialkoxylation Reactions, by Sherry R. Chemler Synthesis of Heterocycles via Metal-Catalyzed Wacker-Type Oxidative Cyclization Reactions of Alkoxy- or Amino-Alkenes, by Wanbin Zhang Synthesis of Saturated Heterocycles via Metal-Catalyzed Hydroamination or Hydroalkoxylation Reactions, by Lisa D. Julian Synthesis of Saturated Heterocycles via Metal-Catalyzed Allylic Alkylation Reactions, by Aaron Aponick Synthesis of Heterocycles via Metal-Catalyzed Cascade/Domino Reactions that Generate a C–N or C–O Bond, by Mark Lautens Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions that Generate a C–N or C–O Bond, by Jerome Waser
Presents an up-to-date overview of the rapidly growing field of carbene transformations Carbene transformations have had an enormous impact on catalysis and organometallic chemistry. With the growth of transition metal-catalyzed carbene transformations in recent decades, carbene transformations are today an important compound class in organic synthesis as well as in the pharmaceutical and agrochemical industries. Edited by leading experts in the field, Transition Metal-Catalyzed Carbene Transformations is a thorough summary of the most recent advances in the rapidly expanding research area. This authoritative volume covers different reaction types such as ring forming reactions and rearrangement reactions, details their conditions and properties, and provides readers with accurate information on a wide range of carbene reactions. Twelve in-depth chapters address topics including carbene C-H bond insertion in alkane functionalization, the application of engineered enzymes in asymmetric carbene transfer, progress in transition-metal-catalyzed cross-coupling using carbene precursors, and more. Throughout the text, the authors highlight novel catalytic systems, transformations, and applications of transition-metal-catalyzed carbene transfer. Highlights the dynamic nature of the field of transition-metal-catalyzed carbene transformations Summarizes the catalytic radical approach for selective carbene cyclopropanation, high enantioselectivity in X-H insertions, and bio-inspired carbene transformations Introduces chiral N,N'-dioxide and chiral guanidine-based catalysts and different transformations with gold catalysis Discusses approaches in cycloaddition reactions with metal carbenes and polymerization with carbene transformations Outlines multicomponent reactions through gem-difunctionalization and transition-metal-catalyzed cross-coupling using carbene precursors Transition Metal-Catalyzed Carbene Transformations is essential reading for all chemists involved in organometallics, including organic and inorganic chemists, catalytic chemists, and chemists working in industry.
An important reference for researchers in the field of metal-enzyme hybrid catalysis Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a comprehensive review of the most current strategies, developed over recent decades, for the design, synthesis, and optimization of these hybrid catalysts as well as material about their application. The contributors—noted experts in the field—present information on the preparation, characterization, and optimization of artificial metalloenzymes in a timely and authoritative manner. The authors present a thorough examination of this interesting new platform for catalysis that combines the excellent selective recognition/binding properties of enzymes with transition metal catalysts. The text includes information on the various applications of metal-enzyme hybrid catalysts for novel reactions, offers insights into the latest advances in the field, and contains an informative perspective on the future: Explores the development of artificial metalloenzymes, the modern and strongly evolving research field on the verge of industrial application Contains a comprehensive reference to the research area of metal-enzyme hybrid catalysis that has experienced tremendous growth in recent years Includes contributions from leading researchers in the field Shows how this new catalysis combines the selective recognition/binding properties of enzymes with transition metal catalysts Written for catalytic chemists, bioinorganic chemists, biochemists, and organic chemists, Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a unique reference to the fundamentals, concepts, applications, and the most recent developments for more efficient and sustainable synthesis.
In this book leading experts have surveyed major areas of application of NHC metal complexes in catalysis. The authors have placed a special focus on nickel- and palladium-catalyzed reactions, on applications in metathesis reactions, on oxidation reactions and on the use of chiral NHC-based catalysts. This compilation is rounded out by an introductory chapter and a chapter dealing with synthetic routes to NHC metal complexes.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field.
This book emphasizes the atom economy aspect of multicomponent reactions. It describes how this methodology has been applied to several named reactions. Among the “twelve principles of green chemistry”, atom economy addresses ‘synthetic efficiency’. A multicomponent reaction can be defined as an energy, cost, and time efficient method for organic synthesis. Instead of making one or two bonds in a chemical transformation, multicomponent reactions generate several chemical bonds in a single operation. This book presents a series of detailed reaction mechanisms that beautifully illustrate this principle. Multicomponent reactions are widely applied to the preparation of complex and diverse molecular structures in academic and industrial research laboratories. As such, this book is targeted at researchers involved in green organic chemistry.