Metaheuristics Algorithms for Medical Applications

Metaheuristics Algorithms for Medical Applications

Author: Mohamed Abdel-Basset

Publisher: Elsevier

Published: 2023-11-25

Total Pages: 249

ISBN-13: 0443133158

DOWNLOAD EBOOK

Metaheuristics Algorithms for Medical Applications: Methods and Applications provides readers with the most complete reference for developing Metaheuristics techniques with Machine Learning for solving biomedical problems. The book is organized to present a stepwise progression beginning with the basics of Metaheuristics, leading into methods and practices, and concluding with advanced topics. The first section of the book presents the fundamental concepts of Metaheuristics and Machine Learning, and also provides a comprehensive taxonomic view of Metaheuristics methods according to a variety of criteria such as data type, scope, method, and so forth. The second section of the book explains how to apply Metaheuristics techniques for solving large-scale biomedical problems, including analysis and validation under different strategies. The final portion of the book focuses on advanced topics in Metaheuristics in four different applications. Readers will discover a variety of new methods, approaches, and techniques, as well as a wide range of applications demonstrating key concepts in Metaheuristics for biomedical science. The book provides a leading-edge resource for researchers in a variety of scientific fields who are interested in metaheuristics, including mathematics, biomedical engineering, computer science, biological sciences, and clinicians in medical practice. - Introduces a new set of Metaheuristics techniques for biomedical applications - Presents basic concepts of Metaheuristics, methods and practices, followed by advanced topics and applications - Provides researchers, practitioners, and project stakeholders with a complete guide for understanding and applying metaheuristics and machine learning techniques in their projects and solutions


Applications of Hybrid Metaheuristic Algorithms for Image Processing

Applications of Hybrid Metaheuristic Algorithms for Image Processing

Author: Diego Oliva

Publisher: Springer Nature

Published: 2020-03-27

Total Pages: 488

ISBN-13: 3030409775

DOWNLOAD EBOOK

This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.


Metaheuristics for Medicine and Biology

Metaheuristics for Medicine and Biology

Author: Amir Nakib

Publisher: Springer

Published: 2017-03-22

Total Pages: 221

ISBN-13: 3662544288

DOWNLOAD EBOOK

This book highlights recent research on metaheuristics for biomedical engineering, addressing both theoretical and applications aspects. Given the multidisciplinary nature of bio-medical image analysis, it has now become one of the most central topics in computer science, computer engineering and electrical and electronic engineering, and attracted the interest of many researchers. To deal with these problems, many traditional and recent methods, algorithms and techniques have been proposed. Among them, metaheuristics is the most common choice. This book provides essential content for senior and young researchers interested in methodologies for implementing metaheuristics to help solve biomedical engineering problems.


Advancements in Applied Metaheuristic Computing

Advancements in Applied Metaheuristic Computing

Author: Dey, Nilanjan

Publisher: IGI Global

Published: 2017-11-30

Total Pages: 357

ISBN-13: 1522541527

DOWNLOAD EBOOK

Metaheuristic algorithms are present in various applications for different domains. Recently, researchers have conducted studies on the effectiveness of these algorithms in providing optimal solutions to complicated problems. Advancements in Applied Metaheuristic Computing is a crucial reference source for the latest empirical research on methods and approaches that include metaheuristics for further system improvements, and it offers outcomes of employing optimization algorithms. Featuring coverage on a broad range of topics such as manufacturing, genetic programming, and medical imaging, this publication is ideal for researchers, academicians, advanced-level students, and technology developers seeking current research on the use of optimization algorithms in several applications.


Advanced Classification Techniques for Healthcare Analysis

Advanced Classification Techniques for Healthcare Analysis

Author: Chakraborty, Chinmay

Publisher: IGI Global

Published: 2019-02-22

Total Pages: 448

ISBN-13: 1522577971

DOWNLOAD EBOOK

Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.


Engineering Optimization

Engineering Optimization

Author: Xin-She Yang

Publisher: John Wiley & Sons

Published: 2010-07-20

Total Pages: 377

ISBN-13: 0470640413

DOWNLOAD EBOOK

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.


Metaheuristic Algorithms in Industry 4.0

Metaheuristic Algorithms in Industry 4.0

Author: Pritesh Shah

Publisher: CRC Press

Published: 2021-09-29

Total Pages: 302

ISBN-13: 1000435989

DOWNLOAD EBOOK

Due to increasing industry 4.0 practices, massive industrial process data is now available for researchers for modelling and optimization. Artificial Intelligence methods can be applied to the ever-increasing process data to achieve robust control against foreseen and unforeseen system fluctuations. Smart computing techniques, machine learning, deep learning, computer vision, for example, will be inseparable from the highly automated factories of tomorrow. Effective cybersecurity will be a must for all Internet of Things (IoT) enabled work and office spaces. This book addresses metaheuristics in all aspects of Industry 4.0. It covers metaheuristic applications in IoT, cyber physical systems, control systems, smart computing, artificial intelligence, sensor networks, robotics, cybersecurity, smart factory, predictive analytics and more. Key features: Includes industrial case studies. Includes chapters on cyber physical systems, machine learning, deep learning, cybersecurity, robotics, smart manufacturing and predictive analytics. surveys current trends and challenges in metaheuristics and industry 4.0. Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.


Computational Intelligence Methods for Super-Resolution in Image Processing Applications

Computational Intelligence Methods for Super-Resolution in Image Processing Applications

Author: Anand Deshpande

Publisher: Springer Nature

Published: 2021-05-28

Total Pages: 308

ISBN-13: 3030679217

DOWNLOAD EBOOK

This book explores the application of deep learning techniques within a particularly difficult computational type of computer vision (CV) problem ─ super-resolution (SR). The authors present and discuss ways to apply computational intelligence (CI) methods to SR. The volume also explores the possibility of using different kinds of CV techniques to develop and enhance the tools/processes related to SR. The application areas covered include biomedical engineering, healthcare applications, medicine, histology, and material science. The book will be a valuable reference for anyone concerned with multiple multimodal images, especially professionals working in remote sensing, nanotechnology and immunology at research institutes, healthcare facilities, biotechnology institutions, agribusiness services, veterinary facilities, and universities.


Machine Learning and Metaheuristics: Methods and Analysis

Machine Learning and Metaheuristics: Methods and Analysis

Author: Uma N. Dulhare

Publisher: Springer Nature

Published: 2023-12-03

Total Pages: 304

ISBN-13: 9819966450

DOWNLOAD EBOOK

This book takes a balanced approach between theoretical understanding and real-time applications. All the topics included real-world problems which show how to explore, build, evaluate, and optimize machine learning models fusion with metaheuristic algorithms. Optimization algorithms classified into two broad categories as deterministic and probabilistic algorithms. The content of book elaborates optimization algorithms such as particle swarm optimization, ant colony optimization, whale search algorithm, and cuckoo search algorithm.


Application of Advanced Optimization Techniques for Healthcare Analytics

Application of Advanced Optimization Techniques for Healthcare Analytics

Author: Mohamed Abdel-Basset

Publisher: CRC Press

Published: 2023-04-11

Total Pages: 245

ISBN-13: 1000852814

DOWNLOAD EBOOK

Application of Advanced Optimization Techniques for Healthcare Analytics, 1st Edition, is an excellent compilation of current and advanced optimization techniques which can readily be applied to solve different hospital management problems. The healthcare system is currently a topic of significant investigation to make life easier for those who are disabled, old, or sick, as well as for young children. The emphasis of the healthcare system has evolved throughout time due to several emerging beneficial technologies, such as personal digital assistants (PDAs), data mining, the internet of things, metaheuristics, fog computing, and cloud computing. Metaheuristics are strong technology for tackling several optimization problems in various fields, especially healthcare systems. The primary advantage of metaheuristic algorithms is their ability to find a better solution to a healthcare problem and their ability to consume as little time as possible. In addition, metaheuristics are more flexible compared to several other optimization techniques. These algorithms are not related to a specific optimization problem but could be applied to any optimization problem by making some small adaptations to become suitable to tackle it. The successful outcome of this book will enable a decision-maker or practitioner to pick a suitable optimization approach when making decisions to schedule patients under crowding environments with minimized human errors.