The plant metabolome is highly complex, being composed of over 200,000 metabolites. The characterization of these small molecules has been crucial to study plant growth and development as well as their response to environmental changes. The potential of metabolomics in plant research, particularly if applied to crop plants, is also extremely valuable in the discovery of biomarkers and in the improvement of crop yield and quality. This Frontiers Research Topic addresses many applications of metabolomics to crop research, based on different analytical platforms, including mass spectrometry, and nuclear magnetic resonance. It comprises 13 articles from 109 authors that show the importance and the contribution of metabolomics in the analysis of crop’s traceability and genetic variation, in the study of fruit development, and in the understanding of the plant’s response to the environment and to different biotic and abiotic stresses.
Metabolomics – which deals with all metabolites of an organism – is a rapidly-emerging sector of post-genome research fields. It plays significant roles in a variety of fields from medicine to agriculture and holds a fundamental position in functional genomics studies and their application in plant biotechnology. This volume comprehensively covers plant metabolomics for the first time. The chapters offer cutting-edge information on analytical technology, bioinformatics and applications. They were all written by leading researchers who have been directly involved in plant metabolomics research throughout the world. Up-to-date information and future developments are described, thereby producing a volume which is a landmark of plant metabolomics research and a beneficial guideline to graduate students and researchers in academia, industry, and technology transfer organizations in all plant science fields.
Bioinformatics in Agriculture: Next Generation Sequencing Era is a comprehensive volume presenting an integrated research and development approach to the practical application of genomics to improve agricultural crops. Exploring both the theoretical and applied aspects of computational biology, and focusing on the innovation processes, the book highlights the increased productivity of a translational approach. Presented in four sections and including insights from experts from around the world, the book includes: Section I: Bioinformatics and Next Generation Sequencing Technologies; Section II: Omics Application; Section III: Data mining and Markers Discovery; Section IV: Artificial Intelligence and Agribots. Bioinformatics in Agriculture: Next Generation Sequencing Era explores deep sequencing, NGS, genomic, transcriptome analysis and multiplexing, highlighting practices forreducing time, cost, and effort for the analysis of gene as they are pooled, and sequenced. Readers will gain real-world information on computational biology, genomics, applied data mining, machine learning, and artificial intelligence. This book serves as a complete package for advanced undergraduate students, researchers, and scientists with an interest in bioinformatics. - Discusses integral aspects of molecular biology and pivotal tool sfor molecular breeding - Enables breeders to design cost-effective and efficient breeding strategies - Provides examples ofinnovative genome-wide marker (SSR, SNP) discovery - Explores both the theoretical and practical aspects of computational biology with focus on innovation processes - Covers recent trends of bioinformatics and different tools and techniques
Metabolomics Perspectives: From Theory to Practical Application is an expertly written volume, which provides a thorough description of the current state-of-the-art in the metabolomics field. The philosophy behind the book is to guide the reader in a step-by-step exploration of metabolomics experiments, ranging from sample preparation to data extraction, analysis and interpretation, and to discuss the main current applications and future perspectives of this emerging science. Armed with critical insights, coupled with a clear writing, the book consists of three main sections. The first one introduces the pivotal theoretical fundamentals and provides a comprehensive overview of the "wet" laboratory workflow, including protocol instructions and a detailed description of experimental methods and analytical techniques. The second section covers a wide range of topics in the context of data analysis, including guidance in exploratory analysis, supervised and unsupervised machine learning approaches and validation and optimization methods. In addition to the several examples reported in the text, the book features an R package, specifically designed to perform all the described algorithms, which is hosted on a companion website (www.metabolomicsperspectives.com) together with several sets of available metabolomic data. Finally, an extensive dissertation describes the latest advances and the major fields of interest for metabolomics applications, highlighting their crucial potentials for future biomedical research. Thus, this book represents a must-read for both experienced researchers, interested in metabolomics, and newcomers to the field. - Provides an in-depth description of the metabolomics experimental workflow and its applications in life science and biomedical research - Features chapter contributions from the greatest international experts in the field - Includes an R package and several sets of metabolomics data, hosted on a companion website
Over the last few decades, various techniques have been developed to alter the properties of plants and animals. While the targeted transfer of recombinant DNA into crop plants remains a valuable tool to achieve a desirable breeding outcome, integration of transgenes into the host genome has been random, which in part, leads to reduced acceptance of GMOs by the general population in some parts of the world. Likewise, methods of induced mutagenesis, such as TILLING, have the disadvantage that many mutations are induced per plant, which has to be removed again by expensive backcrossing. Advances in genome sequencing have provided more and more information on differences between susceptible and resistant varieties, which can now be directly targeted and modified using CRISPR/Cas9 technology. By selecting specific gRNAs occurrence of off-target modifications are comparatively low. ZFNs and TALENs- based approaches required re-engineering a new set of assembled polypeptides for every new target site for each experiment. The difficulty in cloning and protein engineering prevented these tools from being broadly adopted by the scientific community. Compared to these technologies, designing the CRISPR toolbox is much simpler and more flexible. CRISPR/Cas9 is versatile, less expensive and highly efficient. It has become the most widely used technology for genome editing in many organisms. Since its inception as a powerful genome-editing tool in late 2012, this breakthrough technology has completely changed how science is performed. The first few chapters in this book introduce the basic concept, design and implementation of CRISPR/Cas9 for different plant systems. They are followed by in-depth discussions on the legal and bio-safety issues accompanying commercialization and patenting of this emerging technology. Lastly, this book covers emerging areas of new tools and potential applications. We believe readers, novice and expert alike, will benefit from this all-in-one resource on genome editing for crop improvement. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Plant Metabolites and Regulation Under Environmental Stress presents the latest research on both primary and secondary metabolites. The book sheds light on the metabolic pathways of primary and secondary metabolites, the role of these metabolites in plants, and the environmental impact on the regulation of these metabolites. Users will find a comprehensive, practical reference that aids researchers in their understanding of the role of plant metabolites in stress tolerance. - Highlights new advances in the understanding of plant metabolism - Features 17 protocols and methods for analysis of important plant secondary metabolites - Includes sections on environmental adaptations and plant metabolites, plant metabolites and breeding, plant microbiome and metabolites, and plant metabolism under non-stress conditions
Omics in Horticulture Crops presents a comprehensive view of germplasm diversity, genetic evolution, genomics, proteomics and transcriptomics of fruit crops (temperate, tropical and subtropical fruits, fruit nuts, berries), vegetables, tuberous crops, ornamental and floricultural crops and medicinal aromatic plants. Information covering phenomics, genetic diversity, phylogenetic studies, genome sequencing, and genome barcoding through the utilization of molecular markers plays an imperative role in the characterization and effective utilization of diverse germplasm are included in the book. This is a valuable reference for researchers and academics seeking to improve cultivar productivity through enhanced genetic diversity while also retaining optimal traits and protecting the growing environment. - Highlights perspectives, progress and promises of -omics application - Provides a systematic overview of origin, progenitor and domestication process as well as genetic insights - Includes full range of horticultural crops
Environmental Metabolomics Applications in Field and Laboratory Studies: From the Exposome to the Metabolome presents an overview of the current state of aquatic environments and problems caused by human pressure and daily life. The presence of contaminants in nature and their effects are evaluated, along with recommendations for preservation. This book not only shows readers how to implement techniques, it also guides them through the process. As metabolomics becomes a more routine technique for environmental studies and future perspectives, a guide for validation and globalization of current approaches is needed.
Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research. - Reviews techniques used for crop improvement, from selection and crossing over, to microorganismal approaches - Explores the role of conventional biotechnology in crop improvement - Summarizes the combined approaches of cytogenetics and biotechnology for crop improvement, including the importance of molecular techniques in this process - Focuses on the emerging role of bioinformatics for crop improvement