During the last years the understanding for the aetiology of cardiomyopathies could be greatly improved. A great deal of information has accumulated in the field of inherited metabolic diseases, which provides a new basis for our understanding of many heart muscle problems and their corresponding clinical disease entities. This book is meant to give the reader a comprehensive overview of the cardiological manifestations of inborn errors of metabolism. Latest information, such as cardiomyopathy in Fabry disease or in patients with CDG-syndrome is included. It should be helpful, not only to cardiologists, paediatricians, internists and general practicioners, but also to all those interested in a better understanding of the metabolic basis of clinical disease entities.
Cellular and Molecular Pathobiology of Cardiovascular Disease focuses on the pathophysiology of common cardiovascular disease in the context of its underlying mechanisms and molecular biology. This book has been developed from the editors' experiences teaching an advanced cardiovascular pathology course for PhD trainees in the biomedical sciences, and trainees in cardiology, pathology, public health, and veterinary medicine. No other single text-reference combines clinical cardiology and cardiovascular pathology with enough molecular content for graduate students in both biomedical research and clinical departments. The text is complemented and supported by a rich variety of photomicrographs, diagrams of molecular relationships, and tables. It is uniquely useful to a wide audience of graduate students and post-doctoral fellows in areas from pathology to physiology, genetics, pharmacology, and more, as well as medical residents in pathology, laboratory medicine, internal medicine, cardiovascular surgery, and cardiology. - Explains how to identify cardiovascular pathologies and compare with normal physiology to aid research - Gives concise explanations of key issues and background reading suggestions - Covers molecular bases of diseases for better understanding of molecular events that precede or accompany the development of pathology
The heart has a very high energy demand but very little energy reserves. In order to sustain contractile function, the heart has to continually produce a large amount of ATP. The heart utilizes free fatty acids mainly and carbohydrates to some extent as substrates for making energy and any change in this energy supply can seriously compromise cardiac function. It has emerged that alterations in cardiac energy metabolism are a major contributor to the development of a number of different forms of heart disease. It is also now known that optimizing energy metabolism in the heart is a viable and important approach to treating various forms of heart disease. Cardiac Energy Metabolism in Health and Disease describes the research advances that have been made in understanding what controls cardiac energy metabolism at molecular, transcriptional and physiological levels. It also describes how alterations in energy metabolism contribute to the development of heart dysfunction and how optimization of energy metabolism can be used to treat heart disease. The topics covered include a discussion of the effects of myocardial ischemia, diabetes, obesity, hypertrophy, heart failure, and genetic disorders of mitochondrial oxidative metabolism on cardiac energetics. The treatment of heart disease by optimizing energy metabolism is also discussed, which includes increasing overall energy production as well as increasing the efficiency of energy production and switching energy substrate preference of the heart. This book will be a valuable source of information to graduate students, postdoctoral fellows, and investigators in the field of experimental cardiology as well as biochemists, physiologists, pharmacologists, cardiologists, cardiovascular surgeons and other health professionals.
ATP plays a central role in the two leading causes of cardiac morbidity and mortality in the western world: ischemia and heart failure. We are in our infancy applying what is known about biology and chemistry of ATP toward developing effective therapies for these diseases. In this volume, the current understanding of the chemistry and biology of ATP specifically in the cardiomyocyte is presented. New insights into ATP have been gleaned using biophysical techniques allowing dynamic measurement of chemical events in the intact beating heart and using new animal models in which cardiac proteins are either over expressed, deleted or harbor specific mutations. This book provides a summary of the basic understanding and includes illustrations of why ATP and the Heart is important to both the clinician and scientist.
The Scientists Guide to Cardiac Metabolism combines the basic concepts of substrate metabolism, regulation, and interaction within the cell and the organism to provide a comprehensive introduction into the basics of cardiac metabolism. This important reference is the perfect tool for newcomers in cardiac metabolism, providing a basic understanding of the metabolic processes and enabling the newcomer to immediately communicate with the expert as substrate/energy metabolism becomes part of projects. The book is written by established experts in the field, bringing together all the concepts of cardiac metabolism, its regulation, and the impact of disease. - Provides a quick and comprehensive introduction into cardiac metabolism - Contains an integrated view on cardiac metabolism and its interrelation in metabolism with other organs - Presents insights into substrate metabolism in relation to intracellular organization and structure as well as whole organ function - Includes historical perspectives that reference important investigators that have contributed to the development of the field
This open access book presents a comprehensive overview of dilated cardiomyopathy, providing readers with practical guidelines for its clinical management. The first part of the book analyzes in detail the disease’s pathophysiology, its diagnostic work up as well as the prognostic stratification, and illustrates the role of genetics and gene-environment interaction. The second part presents current and future treatment options, highlighting the importance of long-term and individualized treatments and follow-up. Furthermore, it discusses open issues, such as the apparent healing phenomenon, the early prognosis of arrhythmic events or the use of genetic testing in clinical practice. Offering a multidisciplinary approach for optimizing the clinical management of DCM, this book is an invaluable aid not only for the clinical cardiologists, but for all physicians involved in the care of this challenging disease.
The 2nd Edition of this heralded companion to Braunwald's Heart Disease explores the molecular mechanisms of cardiology and the scientific advances that are changing the practice of cardiology today. International experts discuss the role of genetics in cardiovascular disease the molecular basis of ischemic disease, thrombosis and hypertension genetic mapping approaches to inherited disorders biologically targeted agents for hypertension and heart failure and much more. Abundant figures and tables illustrate key concepts. Addresses most common cardiovascular problems from a molecular standpoint. Explores developing treatments for cardiovascular problems based on genetics. Provides references to Braunwald's Heart Disease, 6th Edition Examines today's cutting edge advances in molecular cardiology and the future of gene therapy, Examines the implications of cellular cholesterol metabolism in health and disease. . Delivers up-to-date information on understanding the origin of inherited disease.
Diagnosis and Management of Hypertrophic Cardiomyopathy is aunique, multi-authored compendium of information regarding thecomplexities of clinical and genetic diagnosis, natural history,and management of hypertrophic cardiomyopathy (HCM)—the mostcommon and important of the genetic cardiovasculardiseases—as well as related issues impacting the health oftrained athletes. Edited by Dr. Barry J. Maron, a world authority on HCM, and withmajor contributions from all of the international experts in thisfield, this book provides a single comprehensive source ofinformation concerning HCM. Recent advances in the field arediscussed, including the importance of left ventricular outflowtract obstruction, the use of implantable defibrillators for theprevention of sudden death in young people, definition of thegenetic basis for HCM and its role in clinical diagnosis and riskstratification, the development of more precise strategies forassessing the level of risk for sudden death among all patientswith HCM, and the evolution of invasive interventions for heartfailure symptoms, such as surgical management and its alternatives(alcohol septal ablation and dual-chamber pacing). Key Features: Contributions from all experts in the field,representing diverse viewpoints regarding this heterogeneousdisease and related issues in athletes Information to dispel misunderstandings regarding issuesassociated with HCM and cardiovascular disease in athletes The only comprehensive source of information available on thetopic