This book explains how to employ MASEM, the combination of meta-analysis (MA) and structural equation modelling (SEM). It shows how by using MASEM, a single model can be tested to explain the relationships between a set of variables in several studies. This book gives an introduction to MASEM, with a focus on the state of the art approach: the two stage approach of Cheung and Cheung & Chan. Both, the fixed and the random approach to MASEM are illustrated with two applications to real data. All steps that have to be taken to perform the analyses are discussed extensively. All data and syntax files are available online, so that readers can imitate all analyses. By using SEM for meta-analysis, this book shows how to benefit from all available information from all available studies, even if few or none of the studies report about all relationships that feature in the full model of interest.
Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the importance of SEM and meta-analysis in answering research questions. Key ideas in meta-analysis and SEM are briefly reviewed, and various meta-analytic models are then introduced and linked to the SEM framework. Fixed-, random-, and mixed-effects models in univariate and multivariate meta-analyses, three-level meta-analysis, and meta-analytic structural equation modeling, are introduced. Advanced topics, such as using restricted maximum likelihood estimation method and handling missing covariates, are also covered. Readers will learn a single framework to apply both meta-analysis and SEM. Examples in R and in Mplus are included. This book will be a valuable resource for statistical and academic researchers and graduate students carrying out meta-analyses, and will also be useful to researchers and statisticians using SEM in biostatistics. Basic knowledge of either SEM or meta-analysis will be helpful in understanding the materials in this book.
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
"This accessible volume presents both the mechanics of structural equation modeling (SEM) and specific SEM strategies and applications. The editor, along with an international group of contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results"--
With the availability of software programs such as LISREL, EQS, and AMOS modeling techniques have become a popular tool for formalized presentation of the hypothesized relationships underlying correlational research and for testing the plausibility of hypothesizing for a particular data set. The popularity of these techniques, however, has often led to misunderstandings of them, particularly by students being exposed to them for the first time. Through the use of careful narrative explanation, Basics of Structural Equation Modeling describes the logic underlying structural equation modeling (SEM) approaches, describes how SEM approaches relate to techniques like regression and factor analysis, analyzes the strengths and shortcomings of SEM as compared to alternative methodologies, and explores the various methodologies for analyzing structural equation data.
Offering pragmatic guidance for planning and conducting a meta-analytic review, this book is written in an engaging, nontechnical style that makes it ideal for graduate course use or self-study. The author shows how to identify questions that can be answered using meta-analysis, retrieve both published and unpublished studies, create a coding manual, use traditional and unique effect size indices, and write a meta-analytic review. An ongoing example illustrates meta-analytic techniques. In addition to the fundamentals, the book discusses more advanced topics, such as artifact correction, random- and mixed-effects models, structural equation representations, and multivariate procedures. User-friendly features include annotated equations; discussions of alternative approaches; and "Practical Matters" sections that give advice on topics not often discussed in other books, such as linking meta-analytic results with theory and the utility of meta-analysis software programs. ÿ
During the last decades, a considerable amount of research has been directed towards explaining the concept of Digital Human Resource Management (DHRM). Yet, a holistic assessment of DHRM antecedents and consequences with respect to possible contextual contingencies is still missing. To this end, this thesis introduces a research framework illuminating the multifaceted phenomenon of DHRM from various perspectives. An exploratory four-step meta-analytic structural equation modelling (E-MASEM) approach tailored to address the domain-specific challenges of DHRM is introduced and applied. Results identify 32 constructs associated with the DHRM usage phenomenon which are categorized into DHRM antecedents and DHRM consequences. Findings reveal that user perceptions, expectations, attitudes, and intentions are essential in predicting DHRM usage while HRM service quality and user satisfaction are found crucial in explaining other DHRM consequences. Further, practitioners are informed about the relative importance of factors for both facilitating DHRM adoption and measuring DHRM success. Lastly, this thesis also contributes to the MASEM methodology by outlining a new approach to summarize statistical inferences from multiple moderator tests.
Structural Equation Modeling (SEM) has long been used in social work research, but the writing on the topic is typically fragmented and highly technical. This pocket guide fills a major gap in the literature by providing social work researchers and doctoral students with an accessible synthesis. The authors demonstrate two SEM programs with distinct user interfaces and capabilities (Amos and Mplus) with enough specificity that readers can conduct their own analyses without consulting additional resources. Examples from social work literature highlight best practices for the specification, estimation, interpretation, and modification of structural equation models. Unlike most sources on SEM, this book provides clear guidelines on how to evaluate SEM output and how to proceed when model fit is not acceptable.Oftentimes, confirmatory factor analysis and general structure modeling are the most flexible, powerful, and appropriate choices for social work data. Richly illustrated with figures, equations, matrices, and tables, this pocket guide empowers social workers with a set of defensible analysis strategies that allows for competent, confident use of SEM.
The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.
When determining the most appropriate method for analyzing longitudinal data, you must first consider what research question you want to answer. McArdle and Nesselroade identify five basic purposes of longitudinal structural equation modeling. For each purpose, they present the most useful strategies and models. Two important but underused approaches are emphasized: multiple factorial invariance over time and latent change scores. This volume covers a wealth of models in a straightforward, understandable manner. Rather than overwhelm the reader with an extensive amount of algebra, the authors use path diagrams and emphasize methods that are appropriate for many uses. Book jacket.