Meshless Methods and Their Numerical Properties

Meshless Methods and Their Numerical Properties

Author: Hua Li

Publisher: CRC Press

Published: 2013-02-22

Total Pages: 451

ISBN-13: 1466517468

DOWNLOAD EBOOK

Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.


Meshless Methods and Their Numerical Properties

Meshless Methods and Their Numerical Properties

Author: Hua Li

Publisher: CRC Press

Published: 2013-02-22

Total Pages: 429

ISBN-13: 1466517476

DOWNLOAD EBOOK

Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the m


An Introduction to Meshfree Methods and Their Programming

An Introduction to Meshfree Methods and Their Programming

Author: G.R. Liu

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 497

ISBN-13: 1402034687

DOWNLOAD EBOOK

The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.


Mesh Free Methods

Mesh Free Methods

Author: G.R. Liu

Publisher: CRC Press

Published: 2002-07-29

Total Pages: 715

ISBN-13: 1420040588

DOWNLOAD EBOOK

As we attempt to solve engineering problems of ever increasing complexity, so must we develop and learn new methods for doing so. The Finite Difference Method used for centuries eventually gave way to Finite Element Methods (FEM), which better met the demands for flexibility, effectiveness, and accuracy in problems involving complex geometry. Now,


Meshfree Methods

Meshfree Methods

Author: G.R. Liu

Publisher: CRC Press

Published: 2009-10-06

Total Pages: 772

ISBN-13: 1420082108

DOWNLOAD EBOOK

Understand How to Use and Develop Meshfree TechniquesAn Update of a Groundbreaking WorkReflecting the significant advances made in the field since the publication of its predecessor, Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition systematically covers the most widely used meshfree methods. With 70% new material, this edit


Scattered Data Approximation

Scattered Data Approximation

Author: Holger Wendland

Publisher: Cambridge University Press

Published: 2004-12-13

Total Pages: 346

ISBN-13: 9781139456654

DOWNLOAD EBOOK

Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.


Meshfree Methods for Partial Differential Equations

Meshfree Methods for Partial Differential Equations

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 468

ISBN-13: 3642561039

DOWNLOAD EBOOK

Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.


Biodental Engineering V

Biodental Engineering V

Author: Jorge Belinha

Publisher: CRC Press

Published: 2019-02-13

Total Pages: 294

ISBN-13: 0429555849

DOWNLOAD EBOOK

Dentistry is a branch of medicine with its own particularities and very different fields of action, and is generally regarded as an interdisciplinary field. The use of new technologies is currently the main driving force for the series of international conferences on Biodental Engineering (BIODENTAL). BIODENTAL ENGINEERING V contains the full papers presented at the 5th International Conference on Biodental Engineering (BIODENTAL 2018, Porto, Portugal, 22-23 June 2018). The conference had two workshops, one of them dealing with computational imaging combined with finite element method, the other dealing with bone tissue remodelling models. Additionally, the conference had three special sessions and sixty contributed presentations. The topics discussed in BIODENTAL ENGINEERING V include: Aesthetics Bioengineering Biomaterials Biomechanical disorders Biomedical devices Computational bio- imaging and visualization Computational methods Dental medicine Experimental mechanics Signal processing and analysis Implantology Minimally invasive devices and techniques Orthodontics Prosthesis and orthosis Simulation Software development Telemedicine Tissue engineering Virtual reality The purpose of the series of BIODENTAL Conferences on Biodental Engineering, initiated in 2009, is to perpetuate knowledge on bioengineering applied to dentistry, by promoting a comprehensive forum for discussion on recent advances in related fields in order to identify potential collaboration between researchers and end-users from different sciences.


Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Author: John J H Miller

Publisher: World Scientific

Published: 2012-02-29

Total Pages: 191

ISBN-13: 9814452777

DOWNLOAD EBOOK

Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.