Meromorphic Functions and Projective Curves

Meromorphic Functions and Projective Curves

Author: Kichoon Yang

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 208

ISBN-13: 9401591512

DOWNLOAD EBOOK

This book contains an exposition of the theory of meromorphic functions and linear series on a compact Riemann surface. Thus the main subject matter consists of holomorphic maps from a compact Riemann surface to complex projective space. Our emphasis is on families of meromorphic functions and holomorphic curves. Our approach is more geometric than algebraic along the lines of [Griffiths-Harrisl]. AIso, we have relied on the books [Namba] and [Arbarello-Cornalba-Griffiths-Harris] to agreat exten- nearly every result in Chapters 1 through 4 can be found in the union of these two books. Our primary motivation was to understand the totality of meromorphic functions on an algebraic curve. Though this is a classical subject and much is known about meromorphic functions, we felt that an accessible exposition was lacking in the current literature. Thus our book can be thought of as a modest effort to expose parts of the known theory of meromorphic functions and holomorphic curves with a geometric bent. We have tried to make the book self-contained and concise which meant that several major proofs not essential to further development of the theory had to be omitted. The book is targeted at the non-expert who wishes to leam enough about meromorphic functions and holomorphic curves so that helshe will be able to apply the results in hislher own research. For example, a differential geometer working in minimal surface theory may want to tind out more about the distribution pattern of poles and zeros of a meromorphic function.


Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces

Author: Rick Miranda

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 414

ISBN-13: 0821802682

DOWNLOAD EBOOK

In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.


Lectures on Riemann Surfaces

Lectures on Riemann Surfaces

Author: Otto Forster

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 262

ISBN-13: 1461259614

DOWNLOAD EBOOK

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS


Complex Algebraic Curves

Complex Algebraic Curves

Author: Frances Clare Kirwan

Publisher: Cambridge University Press

Published: 1992-02-20

Total Pages: 278

ISBN-13: 9780521423533

DOWNLOAD EBOOK

This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.


Meromorphic Functions over non-Archimedean Fields

Meromorphic Functions over non-Archimedean Fields

Author: Pei-Chu Hu

Publisher: Springer Science & Business Media

Published: 2000-09-30

Total Pages: 308

ISBN-13: 9780792365327

DOWNLOAD EBOOK

This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.


Geometry of Algebraic Curves

Geometry of Algebraic Curves

Author: Enrico Arbarello

Publisher: Springer

Published: 2013-08-30

Total Pages: 387

ISBN-13: 9781475753240

DOWNLOAD EBOOK

In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).


Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field

Author: J. W. P. Hirschfeld

Publisher: Princeton University Press

Published: 2013-03-25

Total Pages: 717

ISBN-13: 1400847419

DOWNLOAD EBOOK

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.


Algebraic Geometry I

Algebraic Geometry I

Author: V.I. Danilov

Publisher: Springer Science & Business Media

Published: 1998-03-17

Total Pages: 328

ISBN-13: 9783540637059

DOWNLOAD EBOOK

"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." --Acta Scientiarum Mathematicarum


Nevanlinna Theory And Its Relation To Diophantine Approximation

Nevanlinna Theory And Its Relation To Diophantine Approximation

Author: Min Ru

Publisher: World Scientific

Published: 2001-06-06

Total Pages: 338

ISBN-13: 9814492485

DOWNLOAD EBOOK

It was discovered recently that Nevanlinna theory and Diophantine approximation bear striking similarities and connections. This book provides an introduction to both Nevanlinna theory and Diophantine approximation, with emphasis on the analogy between these two subjects.Each chapter is divided into part A and part B. Part A deals with Nevanlinna theory and part B covers Diophantine approximation. At the end of each chapter, a table is provided to indicate the correspondence of theorems.