Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials

Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials

Author: Richard Askey

Publisher: American Mathematical Soc.

Published: 1985

Total Pages: 63

ISBN-13: 0821823213

DOWNLOAD EBOOK

A very general set of orthogonal polynomials in one variable that extends the classical polynomials is a set we called the q-Racah polynomials. In an earlier paper we gave the orthogonality relation for these polynomials when the orthogonality is purely discrete. We now give the weight function in the general case and a number of other properties of these very interesting orthogonal polynomials.


Basic Hypergeometric Series and Applications

Basic Hypergeometric Series and Applications

Author: Nathan Jacob Fine

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 142

ISBN-13: 0821815245

DOWNLOAD EBOOK

The theory of partitions, founded by Euler, has led in a natural way to the idea of basic hypergeometric series, also known as Eulerian series. These series were first studied systematically by Heine, but many early results are attributed to Euler, Gauss, and Jacobi. This book provides a simple approach to basic hypergeometric series.


Algebraizable Logics

Algebraizable Logics

Author: W. J. Blok

Publisher: Advanced Reasoning Forum

Published: 2022-07-23

Total Pages: 90

ISBN-13: 1938421183

DOWNLOAD EBOOK

W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in an automobile accident. Don Pigozzi (1935- ) grew up in Oakland, California, received his doctorate from the University of California, Berkeley in 1970, and was Professor of Mathematics at Iowa State University until his retirement in 2002. The Advanced Reasoning Forum is pleased to make available in its Classic Reprints series this exact reproduction of the 1989 text, with a new errata sheet prepared by Don Pigozzi.


A Comprehensive Course in Analysis

A Comprehensive Course in Analysis

Author: Barry Simon

Publisher:

Published: 2015

Total Pages: 749

ISBN-13: 9781470411039

DOWNLOAD EBOOK

A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis


Stable Module Theory

Stable Module Theory

Author: Maurice Auslander

Publisher: American Mathematical Soc.

Published: 1969

Total Pages: 150

ISBN-13: 0821812947

DOWNLOAD EBOOK

The notions of torsion and torsion freeness have played a very important role in module theory--particularly in the study of modules over integral domains. Furthermore, the use of homological techniques in this connection has been well established. It is the aim of this paper to extend these techniques and to show that this extension leads naturally to several new concepts (e.g. k-torsion freeness and Gorenstein dimension) which are useful in the classification of modules and rings.


Degree Theory of Immersed Hypersurfaces

Degree Theory of Immersed Hypersurfaces

Author: Harold Rosenberg

Publisher: American Mathematical Soc.

Published: 2020-09-28

Total Pages: 62

ISBN-13: 1470441853

DOWNLOAD EBOOK

The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function.


Poincare and the Three Body Problem

Poincare and the Three Body Problem

Author: June Barrow-Green

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 294

ISBN-13: 9780821803677

DOWNLOAD EBOOK

Poincare's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincare discovered mathematical chaos, as is now clear from June Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincare himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincare and the Three Body Problem opens with a discussion of the development of the three body problem itself and Poincare's related earlier work. The book also contains intriguing insights into the contemporary European mathematical community revealed by the workings of the competition. After an account of the discovery of the error and a detailed comparative study of both the original memoir and its rewritten version, the book concludes with an account of the final memoir's reception, influence and impact, and an examination of Poincare's subsequent highly influential work in celestial mechanics.


Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below

Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below

Author: Nicola Gigli

Publisher: American Mathematical Soc.

Published: 2018-02-23

Total Pages: 174

ISBN-13: 1470427656

DOWNLOAD EBOOK

The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.