Human errors contribute significantly to most transportation crashes: approximately 70 to 90 percent of crashes are the result of human error. This book examines human reliability across all types of transportation systems. The material is accessible to readers with no previous knowledge in the field and is supported with a full explanation of the necessary mathematical concepts together with numerous examples and test problems.
Although Reliability Engineering can trace its roots back to World War II, its application to medical devices is relatively recent, and its treatment in the published literature has been quite limited. With the medical device industry among the fastest growing segments of the US economy, it is vital that the engineering, biomedical, manufacturing,
Although Reliability Engineering can trace its roots back to World War II, its application to medical devices is relatively recent, and its treatment in the published literature has been quite limited. With the medical device industry among the fastest growing segments of the US economy, it is vital that the engineering, biomedical, manufacturing, and design communities have up-to-date information on current developments, tools, and techniques. Medical Device Reliability and Associated Areas fills this need with broad yet detailed coverage of the field. It addresses a variety of topics related - directly and indirectly - to reliability, including human error in health care systems and software quality assurance. With emphasis on concepts rather than mathematical rigor, a multitude of examples, exercises, tables, and references, this is one resource that everyone connected to the medical device industry must have.
As medical devices increase in complexity, concerns about efficacy, safety, quality, and longevity increase in stride. Introduced nearly a decade ago, Reliable Design of Medical Devices illuminated the path to increased reliability in the hands-on design of advanced medical devices. With fully updated coverage in its Second Edition, this practical guide continues to be the benchmark for incorporating reliability engineering as a fundamental design philosophy. The book begins by rigorously defining reliability, differentiating it from quality, and exploring various aspects of failure in detail. It examines domestic and international regulations and standards in similar depth, including updated information on the regulatory and standards organizations as well as a new chapter on quality system regulation. The author builds on this background to explain product specification, liability and intellectual property, safety and risk management, design, testing, human factors, and manufacturing. New topics include design of experiments, CAD/CAM, industrial design, material selection and biocompatibility, system engineering, rapid prototyping, quick-response manufacturing, and maintainability as well as a new chapter on Six Sigma for design. Supplying valuable insight based on years of successful experience, Reliable Design of Medical Devices, Second Edition leads the way to implementing an effective reliability assurance program and navigating the regulatory minefield with confidence.
Medical Device Safety: The Regulation of Medical Devices for Public Health and Safety examines the prospects for achieving global harmonization in medical device regulation and describes a possible future global system. Unresolved difficulties are discussed while solutions are proposed. An essential book for all those involved in health physics, en
The term 'medical devices' covers a wide range of equipment essential for patient care at every level of the health service, whether at the bedside, at a health clinic or in a large specialised hospital. Yet many countries lack access to high-quality devices, particularly in developing countries where health technology assessments are rare and there is a lack of regulatory controls to prevent the use of substandard devices. This publication provides a guidance framework for countries wishing to create or modify their own regulatory systems for medical devices, based on best practice experience in other countries. Issues highlighted include: the need for harmonised regulations; and the adoption, where appropriate, of device approvals of advanced regulatory systems to avoid an unnecessary drain on scarce resources. These approaches allow emphasis to be placed on locally-assessed needs, including vendor and device registration, training and surveillance and information exchange systems.
These guidelines form a comprehensive overview of Failure Mode and Effects Analysis (FMEA) and examines why FMEA has become a powerful and respected analytical technique for effectively managing and reducing risks. Readers learn how to use FMEA throughout the life cycles of their product to improve customer satisfaction and assure safety and regulatory compliance. They will obtain sound advice on selecting a study team, setting up and conducting a study, and analyzing the results. Other topics include Failure Mode, Effects, and Criticality Analysis, Risk Management Planning, Advanced Quality Planning, Product Quality Control Plans, and Dynamic Control Plans.
Medical devices that are deemed to have a moderate risk to patients generally cannot go on the market until they are cleared through the FDA 510(k) process. In recent years, individuals and organizations have expressed concern that the 510(k) process is neither making safe and effective devices available to patients nor promoting innovation in the medical-device industry. Several high-profile mass-media reports and consumer-protection groups have profiled recognized or potential problems with medical devices cleared through the 510(k) clearance process. The medical-device industry and some patients have asserted that the process has become too burdensome and is delaying or stalling the entry of important new medical devices to the market. At the request of the FDA, the Institute of Medicine (IOM) examined the 510(k) process. Medical Devices and the Public's Health examines the current 510(k) clearance process and whether it optimally protects patients and promotes innovation in support of public health. It also identifies legislative, regulatory, or administrative changes that will achieve the goals of the 510(k) clearance process. Medical Devices and the Public's Health recommends that the U.S. Food and Drug Administration gather the information needed to develop a new regulatory framework to replace the 35-year-old 510(k) clearance process for medical devices. According to the report, the FDA's finite resources are best invested in developing an integrated premarket and postmarket regulatory framework.
The key to profitability and success in both the medical device and the equipment markets often relates to how easy your products are to use. User acceptance and preference frequently is dependent upon ergonomic design. Medical Device and Equipment Design helps you enhance your product design, maximize user acceptance, and minimize potential problems in the marketplace. It provides practical guidance on how to plan and incorporate ergonomic design principles into medical devices and equipment so users intuitively feel comfortable with the product. Design engineers, usability and reliability engineers, software programmers, documentation specialists, product managers, quality engineers, and market/product managers will find this text invaluable in getting usability built into products from the very beginning.