The Yeast Role in Medical Applications

The Yeast Role in Medical Applications

Author: Waleed Mohamed Hussain Abdulkhair

Publisher: BoD – Books on Demand

Published: 2018-01-17

Total Pages: 178

ISBN-13: 9535137344

DOWNLOAD EBOOK

Biotechnology including medical applications depends on the yeast as biofermenter to produce many industrial products including pharmaceutical ones. Although yeasts are first known as useful microorganisms, some of them are identified as pathogens for plants, animals, and humans. Due to the simple cellular structure of the yeast among other microbial groups, it is used in the earliest investigations to determine the features of eukaryotic molecular biology, cell biology, and physiology. The economic income of some countries mainly depends on yeast for producing the economic products, such as France that depends on yeast for wine production. This book throws light on yeast and its important role in the medical applications.


The Nucleosome

The Nucleosome

Author: A.P. Wolffe

Publisher: Elsevier

Published: 1996-01-08

Total Pages: 265

ISBN-13: 0080537847

DOWNLOAD EBOOK

This is the first in a series of volumes concerning the properties of the eukaryotic nucleus. Contributions from several of the most active laboratories are brought together to present a focused overview of a selected aspect of nuclear structure and function.


Yeast Functional Genomics

Yeast Functional Genomics

Author: Frédéric Devaux

Publisher: Humana

Published: 2015-10-20

Total Pages: 0

ISBN-13: 9781493930784

DOWNLOAD EBOOK

This volume provides a collection of protocols for the study of DNA-DNA contact maps, replication profiles, transcription rates, RNA secondary structures, protein-RNA interactions, ribosome profiling and quantitative proteomes and metabolomes. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Yeast Functional Genomics: Methods and Protocols aims to ensure successful results in the further study of this vital field.


Chromatin Structure and Gene Expression

Chromatin Structure and Gene Expression

Author: Sarah C. R. Elgin

Publisher: Frontiers in Molecular Biology

Published: 2000

Total Pages: 372

ISBN-13: 9780199638901

DOWNLOAD EBOOK

Since publication of the first edition in 1995, there have been significant advances and understanding of chromatin structure and its relation to gene expression. These include a high-resolution structure of the nucleosome core, discovery of the enzymes and complexes that mediate histone acetylation and deacetylation, discovery of novel ATP-dependent chromatin remodeling complexes, new insights into nuclear organization and epigenetic silencing mechanisms. In light of these advances, Chromatin Structure and Gene Expression (2ed.) includes updated chapters and additional material that introduce new concepts in the process of gene regulation in chromatin.


Introduction to Epigenetics

Introduction to Epigenetics

Author: Renato Paro

Publisher: Springer Nature

Published: 2021-03-23

Total Pages: 215

ISBN-13: 3030686701

DOWNLOAD EBOOK

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease


Chromatin Regulation and Dynamics

Chromatin Regulation and Dynamics

Author: Anita Göndör

Publisher: Academic Press

Published: 2016-10-25

Total Pages: 498

ISBN-13: 0128034025

DOWNLOAD EBOOK

Chromatin Regulation and Dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The final chapters discuss the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin Regulation and Dynamics, part of the Translational Epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, and epidemiology by focusing on recent findings of the fast-moving field of chromatin regulation. - Presents and discusses novel principles of chromatin regulation and dynamics with a cross-disciplinary perspective - Promotes crosstalk between basic sciences and their applications in medicine - Provides a framework for future studies on complex diseases by integrating various aspects of chromatin biology with cellular metabolic states, with an emphasis on the dynamic nature of chromatin and stochastic principles - Integrates knowledge on the dynamic regulation of primary chromatin fiber with 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes


Fundamentals of Chromatin

Fundamentals of Chromatin

Author: Jerry L. Workman

Publisher: Springer Science & Business Media

Published: 2013-12-04

Total Pages: 594

ISBN-13: 1461486246

DOWNLOAD EBOOK

​​​​​​​​​​​​​While there has been an increasing number of books on various aspects of epigenetics, there has been a gap over the years in books that provide a comprehensive understanding of the fundamentals of chromatin. ​Chromatin is the combination of DNA and proteins that make up the genetic material of chromosomes. Its primary function is to package DNA to fit into the cell, to strengthen the DNA to prevent damage, to allow mitosis and meiosis, and to control the expression of genes and DNA replication. The audience for this book is mainly newly established scientists ​and graduate students. Rather than going into the more specific areas of recent research on chromatin the chapters in this book give a strong, updated groundwork about the topic. Some the fundamentals that this book will cover include the structure of chromatin and biochemistry and the enzyme complexes that manage it.


Systems Biology of Cancer

Systems Biology of Cancer

Author: Sam Thiagalingam

Publisher: Cambridge University Press

Published: 2015-04-09

Total Pages: 597

ISBN-13: 0521493390

DOWNLOAD EBOOK

An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.


Regulation of Alternative Splicing

Regulation of Alternative Splicing

Author: Philippe Jeanteur

Publisher: Springer Science & Business Media

Published: 2002-10-21

Total Pages: 272

ISBN-13: 9783540438335

DOWNLOAD EBOOK

The discovery in 1977 that genes are split into exons and introns has done away with the one gene - one protein dogma. Indeed, the removal of introns from the primary RNA transcript is not necessarily straightforward since there may be optional pathways leading to different messenger RNAs and consequently to different proteins. Examples of such an alternative splicing mechanism cover all fields of biology. Moreover, there are plenty of occurrences where deviant splicing can have pathological effects. Despite the high number of specific cases of alternative splicing, it was not until recently that the generality and extent of this phenomenon was fully appreciated. A superficial reading of the preliminary sequence of the human genome published in 2001 led to the surprising, and even deceiving to many scientists, low number of genes (around 32,000) which contrasted with the much higher figure around 150,000 which was previously envisioned. Attempts to make a global assessment of the use of alternative splicing are recent and rely essentially on the comparison of genomic mRNA and EST sequences as reviewed by Thanaraj and Stamm in the first chapter of this volume. Most recent estimates suggest that 40-60% of human genes might be alternatively spliced, as opposed to about 22% for C. elegans.