Mechanics of Soft Materials

Mechanics of Soft Materials

Author: Konstantin Volokh

Publisher: Springer

Published: 2019-06-11

Total Pages: 167

ISBN-13: 9811383715

DOWNLOAD EBOOK

This book provides a concise introduction to soft matter modelling, together with an up-to-date review of the continuum mechanical description of soft and biological materials, from the basics to the latest scientific materials. It also includes multi-physics descriptions, such as chemo-, thermo-, and electro-mechanical coupling. The new edition includes a new chapter on fractures as well as numerous corrections, clarifications and new solutions. Based on a graduate course taught for the past few years at Technion, it presents original explanations for a number of standard materials, and features detailed examples to complement all topics discussed.


Soft Solids

Soft Solids

Author: Alan D. Freed

Publisher: Birkhäuser

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9783319376974

DOWNLOAD EBOOK

This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics and other fields where the mechanical response of soft solids is relevant. Soft Solids: A Primer to the Theoretical Mechanics of Materials is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunity to apply what they learned in the current chapter and to build upon the material in prior chapters.


Non-Linear Mechanics of Materials

Non-Linear Mechanics of Materials

Author: Jacques Besson

Publisher: Springer Science & Business Media

Published: 2009-11-25

Total Pages: 433

ISBN-13: 9048133564

DOWNLOAD EBOOK

In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.


Mechanics and Physics of Soft Materials

Mechanics and Physics of Soft Materials

Author: Qihan Liu

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Materials where thermal energy is comparable to the interaction energy between molecules are called soft materials. Soft materials are everywhere in our life: food, rubber, polymer diaper, our own body, etc. The thermal fluctuation endows soft materials with fundamentally different behavior comparing to hard materials like metals and ceramics. This dissertation studies three aspects of the mechanics and physics of soft materials, as is reviewed below.


Soft Solids

Soft Solids

Author: Alan D. Freed

Publisher: Springer Science & Business Media

Published: 2014-03-10

Total Pages: 391

ISBN-13: 3319035517

DOWNLOAD EBOOK

This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics and other fields where the mechanical response of soft solids is relevant. Soft Solids: A Primer to the Theoretical Mechanics of Materials is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunity to apply what they learned in the current chapter and to build upon the material in prior chapters.


Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Author: Francesco dell'Isola

Publisher: Springer Nature

Published: 2020-11-01

Total Pages: 403

ISBN-13: 3030537552

DOWNLOAD EBOOK

This book reviews the mathematical modeling and experimental study of systems involving two or more different length scales. The effects of phenomena occurring at the lower length scales on the behavior at higher scales are of intrinsic scientific interest, but can also be very effectively used to determine the behavior at higher length scales or at the macro-level. Efforts to exploit this micro- and macro-coupling are, naturally, being pursued with regard to every aspect of mechanical phenomena. This book focuses on the changes imposed on the dynamics, strength of materials and durability of mechanical systems by related multiscale phenomena. In particular, it addresses: 1: the impacts of effective dissipation due to kinetic energy trapped at lower scales 2: wave propagation in generalized continua 3: nonlinear phenomena in metamaterials 4: the formalization of more general models to describe the exotic behavior of meta-materials 5: the design and study of microstructures aimed at increasing the toughness and durability of novel materials


Soft Matter for Biomedical Applications

Soft Matter for Biomedical Applications

Author: Dr Helena S Azevedo

Publisher: Royal Society of Chemistry

Published: 2021-06-11

Total Pages: 788

ISBN-13: 1788017579

DOWNLOAD EBOOK

Dynamic soft materials that have the ability to expand and contract, change stiffness, self-heal or dissolve in response to environmental changes, are of great interest in applications ranging from biosensing and drug delivery to soft robotics and tissue engineering. This book covers the state-of-the-art and current trends in the very active and exciting field of bioinspired soft matter, its fundamentals and comprehension from the structural-property point of view, as well as materials and cutting-edge technologies that enable their design, fabrication, advanced characterization and underpin their biomedical applications. The book contents are supported by illustrated examples, schemes, and figures, offering a comprehensive and thorough overview of key aspects of soft matter. The book will provide a trusted resource for undergraduate and graduate students and will extensively benefit researchers and professionals working across the fields of chemistry, biochemistry, polymer chemistry, materials science and engineering, nanosciences, nanotechnologies, nanomedicine, biomedical engineering and medical sciences.


Nonlinear Mechanics of Soft Fibrous Materials

Nonlinear Mechanics of Soft Fibrous Materials

Author: Luis Dorfmann

Publisher: Springer

Published: 2014-12-02

Total Pages: 311

ISBN-13: 3709118387

DOWNLOAD EBOOK

The book presents a state-of-the-art overview of the fundamental theories, established models and ongoing research related to the modeling of these materials. Two approaches are conventionally used to develop constitutive relations for highly deformable fibrous materials. According to the phenomenological approach, a strain energy density function can be defined in terms of strain invariants. The other approach is based on kinetic theories, which treats a fibrous material as a randomly oriented inter-tangled network of long molecular chains bridged by permanent and temporary junctions. At the micro-level, these are associated with chemical crosslinks and active entanglements, respectively. The papers include carefully crafted overviews of the fundamental formulation of the three-dimensional theory from several points of view, and address their equivalences and differences. Also included are solutions to boundary-value problems which are amenable to experimental verification. A further aspect is the elasticity of filaments, stability of equilibrium and thermodynamics of the molecular network theory.