Cellular Materials in Nature and Medicine

Cellular Materials in Nature and Medicine

Author: Lorna J. Gibson

Publisher: Cambridge University Press

Published: 2010-09-09

Total Pages: 321

ISBN-13: 0521195446

DOWNLOAD EBOOK

Describes the structure and mechanics of a wide range of cellular materials in botany, zoology, and medicine.


Cellular Solids

Cellular Solids

Author: Lorna J. Gibson

Publisher: Cambridge University Press

Published: 1997

Total Pages: 536

ISBN-13: 9780521499118

DOWNLOAD EBOOK

In this new edition of their classic work on Cellular Solids, the authors have brought the book completely up to date, including new work on processing of metallic and ceramic foams and on the mechanical, electrical and acoustic properties of cellular solids. Data for commercially available foams are presented on material property charts; two new case studies show how the charts are used for selection of foams in engineering design. Over 150 references appearing in the literature since the publication of the first edition are cited. The text summarises current understanding of the structure and mechanical behaviour of cellular materials, and the ways in which they can be exploited in engineering design. Cellular solids include engineering honeycombs and foams (which can now be made from polymers, metals, ceramics and composites) as well as natural materials, such as wood, cork and cancellous bone.


Cellular Ceramics

Cellular Ceramics

Author: Michael Scheffler

Publisher: John Wiley & Sons

Published: 2006-05-12

Total Pages: 670

ISBN-13: 352760670X

DOWNLOAD EBOOK

Cellular ceramics are a specific class of porous materials which includes among others foams, honeycombs, connected fibers, robocast structures and assembled hollow spheres. Because of their particular structure, cellular ceramics display a wide variety of specific properties which make them indispensable for various engineering applications. An increasing number of patents, scientific literature and international conferences devoted to cellular materials testifies to a rapidly growing interest of the technical community in this topic. New applications for cellular ceramics are constantly being put under development. The book, authored by leading experts in this emerging field, gives an overview of the main aspects related to the processing of diverse cellular ceramic structures, methods of structural and properties characterisation and well established industrial, novel and potential applications. It is an introduction to newcomers in this research area and allows students to obtain an in-depth knowledge of basic and practical aspects of this fascinating class of advanced materials.


Voids in Materials

Voids in Materials

Author: Gary M. Gladysz

Publisher: Elsevier

Published: 2020-11-30

Total Pages: 339

ISBN-13: 0128192836

DOWNLOAD EBOOK

All materials have voids in them, at some scale. Sometimes the voids are ignored, sometimes they are taken into account, and other times they are the focal point of the research. Voids in Materials: From Unavoidable Defects to Designed Cellular Materials takes due notice of all these occurrences, whether designed or unavoidable defects. We define, categorize, and characterize the voids (or empty spaces in materials) and we analyze the effects they have on material properties. This second edition is an updated and expanded central reference for voids in materials and covers all types of voids, intrinsic and intentional, and stochastic and nonstochastic, and the processes and conditions that are needed to create them and is a valuable resource to students in the areas of mechanical engineering, chemical engineering, materials science and engineering, physics, and chemistry, as well as scientists, researchers, and engineers in industry. - the effect of voids in materials; from low volume fraction defects and free volume in polymer networks to high void volume fraction foams and aerogels - how and why voids are introduced into materials across the length scales - biomaterial design used in vivo for soft, hard, and nerve tissue scaffolds - metallic and geopolymeric foams - additive manufacturing technologies used to tailor regularity (R) in the cell structure - stochastic, nonstochastic, and Voronoi foams - the latest techniques for characterizing voids - new chapters, covering the Kirkendall effect to create hollow and porous structures, and nanometer scale voids: nanotubes, zeolites, organic frameworks, and nanoporous noble metals


Porous Materials

Porous Materials

Author: Peisheng Liu

Publisher: Elsevier

Published: 2014-08-12

Total Pages: 577

ISBN-13: 0124078370

DOWNLOAD EBOOK

Engineers and scientists alike will find this book to be an excellent introduction to the topic of porous materials, in particular the three main groups of porous materials: porous metals, porous ceramics, and polymer foams. Beginning with a general introduction to porous materials, the next six chapters focus on the processing and applications of each of the three main materials groups. The book includes such new processes as gel-casting and freeze-drying for porous ceramics and self-propagating high temperature synthesis (SHS) for porous metals. The applications discussed are relevant to a wide number of fields and industries, including aerospace, energy, transportation, construction, electronics, biomedical and others. The book concludes with a chapter on characterization methods for some basic parameters of porous materials. Porous Materials: Processing and Applications is an excellent resource for academic and industrial researchers in porous materials, as well as for upper-level undergraduate and graduate students in materials science and engineering, physics, chemistry, mechanics, metallurgy, and related specialties. - A comprehensive overview of processing and applications of porous materials – provides younger researchers, engineers and students with the best introduction to this class of materials - Includes three full chapters on modern applications - one for each of the three main groups of porous materials - Introduces readers to several characterization methods for porous materials, including methods for characterizing pore size, thermal conductivity, electrical resistivity and specific surface area


Powder Surface Area and Porosity

Powder Surface Area and Porosity

Author: S. Lowell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 244

ISBN-13: 9400955626

DOWNLOAD EBOOK

The rapid growth of interest in powders and their surface properties in many diverse industries prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. It is intended as an introduction to some of the elementary theory and experimental methods used to study the surface area, porosity and density of powders. It may be found useful by those with little or no training in solid surfaces who have the need to quickly learn the rudiments of surface area, density and pore-size measurements. Syosset, New York S. Lowell May, 1983 J. E. Shields Xl List of symbols Use of symbols for purposes other than those indicated in the following list are so defined in the text. Some symbols not shown in this list are defined in the text. d adsorbate cross-sectional area A area; condensation coefficient; collision frequency C BET constant c concentration D diameter; coefficient of thermal diffusion E adsorption potential f permeability aspect factor F flow rate; force; feed rate 9 gravitational constant G Gibbs free energy GS free surface energy h heat of immersion per unit area; height H enthalpy Hi heat of immersion Hsv heat of adsorption BET intercept; filament current k thermal conductivity; specific reaction rate K Harkins-Jura constant I length L heat of liquefaction M mass M molecular weight n number of moles N number of molecules; number of particles N Avagadro's number .


Porous Metals with Directional Pores

Porous Metals with Directional Pores

Author: Hideo Nakajima

Publisher: Springer Science & Business Media

Published: 2013-09-27

Total Pages: 291

ISBN-13: 4431540172

DOWNLOAD EBOOK

This book reviews the recent development of fabrication methods and various properties of lotus-type porous metals and their applications. The nucleation and growth mechanism of the directional pores in metals are discussed in comparison with a model experiment of carbon dioxide pores in ice. Three casting techniques are introduced to produce not only metals and alloys but also intermetallic compounds, semiconductors, and ceramics: mold casting, continuous zone melting, and continuous casting. The latter has merits for mass production of lotus metals to control porosity, pore size and pore direction. Furthermore, anisotropic behavior of elastic, mechanical properties, thermal and electrical conductivity, magnetic properties, and biocompatibility are introduced as peculiar features of lotus metals.


Applied Nanoindentation in Advanced Materials

Applied Nanoindentation in Advanced Materials

Author: Atul Tiwari

Publisher: John Wiley & Sons

Published: 2017-10-30

Total Pages: 704

ISBN-13: 1119084490

DOWNLOAD EBOOK

Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.


IUTAM Symposium on Mechanical Properties of Cellular Materials

IUTAM Symposium on Mechanical Properties of Cellular Materials

Author: Han Zhao

Publisher: Springer Science & Business Media

Published: 2008-12-25

Total Pages: 224

ISBN-13: 1402094043

DOWNLOAD EBOOK

Solid cellular materials (foams, lattice materials, honeycombs, etc.) are attractive and have resulted in the creation of an active subject for structural, mechanical and material scientists in recent years. Indeed, constant progress in the manufacturing techniques are improving their properties and reducing their costs; and mass productions and industrial applications are beginning. An important mechanical problem is how to characterize and model the mechanical behaviour of these materials, which is necessary for industrial design and numerical predictions involved in various applications such as light weight structures, energy absorbers. This volume contains twenty-two contributions written by distinguished invited speakers from all part of the world to the iutam symposium on mechanical properties of cellular materials. It provides a survey on recent advances in the characterisation and modeling of the mechanical properties of solid cellular materials under static and dynamic loading as well as their applications in lightweight structures analysis and design. This volume will be of interest to structural, mechanical and material scientists and engineers working on different aspects of this new class of materials (for example in microstructure observation, micromechanical and multiscale modeling, phenomenological models, structural impact behaviour and numerical validation).