Mechanical Characterization of Materials and Wave Dispersion

Mechanical Characterization of Materials and Wave Dispersion

Author: Yvon Chevalier

Publisher: John Wiley & Sons

Published: 2013-03-04

Total Pages: 455

ISBN-13: 1118623150

DOWNLOAD EBOOK

Over the last 50 years, the various available methods of investigating dynamic properties of materials have resulted in significant advances in this area of materials science. Dynamic tests have also recently proven to be as efficient as static tests, and have the advantage that they are often easier to use at lower frequency. This book explores dynamic testing, the methods used, and the experiments performed, placing a particular emphasis on the context of bounded medium elastodynamics. The book initially focuses on the complements of continuum mechanics before moving on to the various types of rod vibrations: extensional, bending and torsional. In addition, chapters contain practical examples alongside theoretical discussion to facilitate the reader's understanding. The results presented are the culmination of over 30 years of research by the authors and will be of great interest to anyone involved in this field.


Mechanics of Dislocation Fields

Mechanics of Dislocation Fields

Author: Claude Fressengeas

Publisher: John Wiley & Sons

Published: 2017-09-25

Total Pages: 229

ISBN-13: 111857818X

DOWNLOAD EBOOK

Accompanying the present trend of engineering systems aimed at size reduction and design at microscopic/nanoscopic length scales, Mechanics of Dislocation Fields describes the self-organization of dislocation ensembles at small length scales and its consequences on the overall mechanical behavior of crystalline bodies. The account of the fundamental interactions between the dislocations and other microscopic crystal defects is based on the use of smooth field quantities and powerful tools from the mathematical theory of partial differential equations. The resulting theory is able to describe the emergence of dislocation microstructures and their evolution along complex loading paths. Scale transitions are performed between the properties of the dislocation ensembles and the mechanical behavior of the body. Several variants of this overall scheme are examined which focus on dislocation cores, electromechanical interactions of dislocations with electric charges in dielectric materials, the intermittency and scale-invariance of dislocation activity, grain-to-grain interactions in polycrystals, size effects on mechanical behavior and path dependence of strain hardening.


Physical Chemistry and Acid-Base Properties of Surfaces

Physical Chemistry and Acid-Base Properties of Surfaces

Author: Jean-Charles Joud

Publisher: John Wiley & Sons

Published: 2015-11-04

Total Pages: 180

ISBN-13: 1119145414

DOWNLOAD EBOOK

The first part of this book looks at the consequence of chemical and topological defects existing on real surfaces, which explain the wettability of super hydrophilc and super hydrophobic surfaces. There follows an in-depth analysis of the acido-basicity of surfaces with, as an illustration, different wettability experiments on real materials. The next chapter deals with various techniques enabling the measurement of acido basicity of the surfaces including IR and XPS technics. The last part of the book presents an electrochemical point of view which explains the surface charges of the oxide at contact with water or other electrolyte solutions in the frame of Bronsted acido-basicity concept. Various consequences are deduced from such analyses illustrated by original measurement of the point of zero charge or by understanding the basic principles of the electrowetting experiments.


Viscoelastic Modeling for Structural Analysis

Viscoelastic Modeling for Structural Analysis

Author: Jean Salençon

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 139

ISBN-13: 1119618355

DOWNLOAD EBOOK

The theory of viscoelasticity has been built up as a mechanical framework for modeling important aspects of the delayed behavior of a wide range of materials. This book, primarily intended for civil and mechanical engineering students, is devoted specifically to linear viscoelastic behavior within the small perturbation framework. The fundamental concepts of viscoelastic behavior are first presented from the phenomenological viewpoint of the basic creep and relaxation tests within the simple one-dimensional framework. The linearity and non-ageing hypotheses are introduced successively, with the corresponding expressions of the constitutive law in the form of Boltzmann’s integral operators and Riemann’s convolution products respectively. Applications to simple quasi-static processes underline the dramatic and potentially catastrophic consequences of not taking viscoelastic delayed behavior properly into account at the design stage. Within the three-dimensional continuum framework, the linear viscoelastic constitutive equation is written using compact mathematical notations and takes material symmetries into account. The general analysis of quasi-static linear viscoelastic processes enhances similarities with, and differences from, their elastic counterparts. Simple typical case studies illustrate the importance of an in-depth physical understanding of the problem at hand prior to its mathematical analysis.


Mechanical Behavior of Organic Matrix Composites

Mechanical Behavior of Organic Matrix Composites

Author: Marco Gigliotti

Publisher: John Wiley & Sons

Published: 2017-12-27

Total Pages: 133

ISBN-13: 1119388848

DOWNLOAD EBOOK

The book focuses on the effect of ageing (thermo-oxidation, humid ageing) on the mechanical properties of organic matrix composite materials, covering: Bibliographic issues and a detailed state-of-the-art; phenomenological and experimental issues; modelling issues and models parameter identification; illustration and interpretation of experimental tests and proposal for novel test design in the light of the model predictions.


Springer Handbook of Experimental Solid Mechanics

Springer Handbook of Experimental Solid Mechanics

Author: William N. Sharpe, Jr.

Publisher: Springer Science & Business Media

Published: 2008-12-04

Total Pages: 1100

ISBN-13: 0387268839

DOWNLOAD EBOOK

The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.


Multi-mechanism Modeling of Inelastic Material Behavior

Multi-mechanism Modeling of Inelastic Material Behavior

Author: Georges Cailletaud

Publisher: John Wiley & Sons

Published: 2017-12-27

Total Pages: 290

ISBN-13: 1118845137

DOWNLOAD EBOOK

This book focuses on a particular class of models (namely Multi-Mechanism models) and their applications to extensive experimental data base related to different kind of materials. These models (i) are able to describe the main mechanical effects in plasticity, creep, creep/plasticity interaction, ratcheting extra-hardening under non-proportional loading (ii) provide local information (such us local stress/strain fields, damage, ....). A particular attention is paid to the identification process of material parameters. Moreover, finite element implementation of the Multi-Mechanism models is detailed.


Silicon, From Sand to Chips, Volume 2

Silicon, From Sand to Chips, Volume 2

Author: Alain Vignes

Publisher: John Wiley & Sons

Published: 2024-06-04

Total Pages: 175

ISBN-13: 1394297637

DOWNLOAD EBOOK

Silicon is the material of the digital revolution, of solar energy and of digital photography, which has revolutionized both astronomy and medical imaging. It is also the material of microelectromechanical systems (MEMS), indispensable components of smart objects. The discovery of the electronic and optoelectronic properties of germanium and silicon during the Second World War, followed by the invention of the transistor, ushered in the digital age. Although the first transistors were made from germanium, silicon eventually became the preferred material for these technologies. Silicon, From Sand to Chips 2 traces the history of the discoveries, inventions and developments in basic components and chips that these two materials enabled one after the other. The book is divided into two volumes and this second volume is devoted to microelectronic and optoelectronic chips, solar cells and MEMS.


Microstructured Materials: Inverse Problems

Microstructured Materials: Inverse Problems

Author: Jaan Janno

Publisher: Springer Science & Business Media

Published: 2011-08-27

Total Pages: 161

ISBN-13: 364221584X

DOWNLOAD EBOOK

Complex, microstructured materials are widely used in industry and technology and include alloys, ceramics and composites. Focusing on non-destructive evaluation (NDE), this book explores in detail the mathematical modeling and inverse problems encountered when using ultrasound to investigate heterogeneous microstructured materials. The outstanding features of the text are firstly, a clear description of both linear and nonlinear mathematical models derived for modelling the propagation of ultrasonic deformation waves, and secondly, the provision of solutions to the corresponding inverse problems that determine the physical parameters of the models. The data are related to nonlinearities at both a macro- and micro- level, as well as to dispersion. The authors’ goal has been to construct algorithms that allow us to determine the parameters within which we are required to characterize microstructure. To achieve this, the authors not only use conventional harmonic waves, but also propose a novel methodology based on using solitary waves in NDE. The book analyzes the uniqueness and stability of the solutions, in addition to providing numerical examples.


Fatigue of Textile and Short Fiber Reinforced Composites

Fatigue of Textile and Short Fiber Reinforced Composites

Author: Valter Carvelli

Publisher: John Wiley & Sons

Published: 2017-03-10

Total Pages: 184

ISBN-13: 1119413451

DOWNLOAD EBOOK

This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.