Differential Scanning Calorimetry

Differential Scanning Calorimetry

Author: G.W.H. Höhne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 233

ISBN-13: 366203302X

DOWNLOAD EBOOK

Differential Scanning Calorimetry (DSC) is a well established measuring method which is used on a large scale in different areas of research, development, and quality inspection and testing. Over a large temperature range, thermal effects can be quickly identified and the relevant temperature and the characteristic caloric values determined using substance quantities in the mg range. Measurement values obtained by DSC allow heat capacity, heat of transition, kinetic data, purity and glass transition to be determined. DSC curves serve to identify substances, to set up phase diagrams and to determine degrees of crystallinity. This book provides, for the first time, an overall description of the most impor tant applications of Differential Scanning Calorimetry. Prerequisites for reliable measurement results, optimum evaluation of the measurement curves and esti mation of the uncertainties of measurement are, however, the knowledge of the theoretical bases of DSC, a precise calibration of the calorimeter and the correct analysis of the measurement curve. The largest part of this book deals with these basic aspects: The theory of DSC is discussed for both heat flux and power compensated instruments; temperature calibration and caloric calibration are described on the basis of thermodynamic principles. Desmearing of the measurement curve in different ways is presented as a method for evaluating the curves of fast transitions.


Modulated Temperature Differential Scanning Calorimetry

Modulated Temperature Differential Scanning Calorimetry

Author: Mike Reading

Publisher: Springer Science & Business Media

Published: 2006-10-12

Total Pages: 340

ISBN-13: 1402037503

DOWNLOAD EBOOK

MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC. In 1992 a new calorimetric technique was introduced that superimposed a small modulation on top of the conventional linear temperature program typically used in differential scanning calorimetry. This was combined with a method of data analysis that enabled the sample’s response to the linear component of the temperature program to be separated from its response to the periodic component. In this way, for the first time, a signal equivalent to that of conventional DSC was obtained simultaneously with a measure of the sample’s heat capacity from the modulation. The new information this provided sparked a revolution in scanning calorimetry by enabling new insights to be gained into almost all aspects of polymer characteristics. This book provides both a basic and advanced treatment of the theory of the technique followed by a detailed exposition of its application to reacting systems, blends and semicrystalline polymers by the leaders in all of these fields. It is an essential text for anybody interested in calorimetry or polymer characterization, especially if they have found that conventional DSC cannot help them with their problems.


Handbook of Thermal Analysis and Calorimetry

Handbook of Thermal Analysis and Calorimetry

Author: Stephen Z.D. Cheng

Publisher: Elsevier

Published: 2002-12-09

Total Pages: 859

ISBN-13: 008052740X

DOWNLOAD EBOOK

As a new and exciting field of interdisciplinary macromolecular science and engineering, polymeric materials will have a profound presence in 21st century chemical, pharmaceutical, biomedical, manufacturing, infrastructure, electronic, optical and information technologies. The origin of this field derived from an area of polymer science and engineering encompassing plastic technologies. The field is rapidly expanding to incorporate new interdisciplinary research areas such as biomaterials, macromolecular biology, novel macromolecular structures, environmental macromolecular science and engineering, innovative and nano-fabrications of products, and is translating discoveries into technologies.·Unique in combining scientific concepts with technological aspects·Provides a comprehensive and broad coverage of thermodynamic and thermal behaviours of various polymeric materials as well as methodologies of thermal analysis and calorimetry·Contributions are from both pioneering scientists and the new generation of researchers


Thermodynamics of Minerals and Melts

Thermodynamics of Minerals and Melts

Author: R.C. Newton

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 312

ISBN-13: 1461258715

DOWNLOAD EBOOK

Today large numbers of geoscientists apply thermodynamic theory to solu tions of a variety of problems in earth and planetary sciences. For most problems in chemistry, the application of thermodynamics is direct and rewarding. Geoscientists, however, deal with complex inorganic and organic substances. The complexities in the nature of mineralogical substances arise due to their involved crystal structure and multicomponental character. As a result, thermochemical solutions of many geological-planetological problems should be attempted only with a clear understanding of the crystal-chemical and thermochemical character of each mineral. The subject of physical geochemistry deals with the elucidation and application of physico-chemical principles to geosciences. Thermodynamics of mineral phases and crystalline solutions form an integral part of it. Developments in mineralogic thermody namics in recent years have been very encouraging, but do not easily reach many geoscientists interested mainly in applications. This series is to provide geoscientists and planetary scientists with current information on the develop ments in thermodynamics of mineral systems, and also provide the active researcher in this rapidly developing field with a forum through which he can popularize the important conclusions of his work. In the first several volumes, we plan to publish original contributions (with an abundant supply of back ground material for the uninitiated reader) and thoughtful reviews from a number of researchers on mineralogic thermodynamics, on the application of thermochemistry to planetary phase equilibria (including meteorites), and on kinetics of geochemical reactions.


Calorimetry

Calorimetry

Author: Stefan Mathias Sarge

Publisher: John Wiley & Sons

Published: 2014-02-25

Total Pages: 346

ISBN-13: 3527649387

DOWNLOAD EBOOK

Clearly divided into three parts, this practical book begins by dealing with all fundamental aspects of calorimetry. The second part looks at the equipment used and new developments. The third and final section provides measurement guidelines in order to obtain the best results. The result is optimized knowledge for users of this technique, supplemented with practical tips and tricks.


Structure, Dynamics, and Properties of Silicate Melts

Structure, Dynamics, and Properties of Silicate Melts

Author: Jonathan F. Stebbins

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-17

Total Pages: 632

ISBN-13: 1501509381

DOWNLOAD EBOOK

Volume 32 of Reviews in Mineralogy introduces the basic concepts of melt physics and relaxation theory as applied to silicate melts, then to describe the current state of experimental and computer simulation techniques for exploring the detailed atomic structure and dynamic processes which occur at high temperature, and finally to consider the relationships between melt structure, thermodynamic properties and rheology within these liquids. These fundamental relations serve to bridge the extrapolation from often highly simplified melt compositions studied in the laboratory to the multicomponent systems found in nature. This volume focuses on the properties of simple model silicate systems, which are usually volatile-free. The behavior of natural magmas has been summarized in a previous Short Course volume (Nicholls and Russell, editors, 1990: Reviews in Mineralogy, Vol. 24), and the effect of volatiles on magmatic properties in yet another (Carroll and Holloway, editors, 1994: Vol. 30). The Mineralogical Society of America sponsored a short course for which this was the text at Stanford University December 9 and 10, 1995, preceding the Fall Meeting of the American Geophysical Union and MSA in San Fransisco, with about 100 professionals and graduate students in attendance.


Thermal Analysis and Calorimetry

Thermal Analysis and Calorimetry

Author: Aline Auroux

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-07-04

Total Pages: 521

ISBN-13: 3110590492

DOWNLOAD EBOOK

This book summarizes the application of thermal analysis tools in different research areas. Areas covered include characterization of catalytic materials, plastics and polymers, analysis of salts, minerals and oxides. The reader is provided with an overview of experimental strategy, methodology, usage of complementary thermoanalytical methods and the type of information which could be drawn depending on the research field.


Thermodynamic Modeling of Geologic Materials

Thermodynamic Modeling of Geologic Materials

Author: Ian S. E. Carmichael

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-17

Total Pages: 516

ISBN-13: 1501508954

DOWNLOAD EBOOK

Volume 17 of Reviews in Mineralogy is based on a short course, entitled "Thermodynamic Modeling of Geological Materials: Minerals, Fluids amd Melts," October 22-25, 1987, at the Wickenburg Inn near Phoenix, Arizona. Contents: Thermodynamic Analysis of Phase Equilibria in Simple Mineral Systems Models of Crystalline solutions Thermodynamics of Multicomponent Systems Containing Several Solid Solutions Thermodynamic Model for Aqueous Solutions of Liquid-like Density Models of Mineral Solubility in Concentrated Brines with Application to Field Observations Calculation of the Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals in Supercritical Electrolyte Solutions Igneous Fluids Ore Fluids: Magmatic to Supergene Thermodynamic Models of Molecular Fluids at the Elevated Pressures and Temperatures of Crustal Metamorphism Mineral Solubilities and Speciation in Supercritical Metamorphic Fluids Development of Models for Multicomponent Melts: Analysis of Synthetic Systems Modeling Magmatic Systems: Thermodynamic Relations Modeling Magmatic Systems: Petrologic Applications


Differential Scanning Calorimetry

Differential Scanning Calorimetry

Author: Günther Höhne

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 304

ISBN-13: 3662067102

DOWNLOAD EBOOK

In this fully updated and revised second edition the authors provide the newcomer and the experienced practitioner with a balanced and comprehensive insight into all important DSC methods, including a sound presentation of the theoretical basis of DSC and TMDSC measurements. Emphasis is layed on instrumentation, the underlying measurement principles, metrologically correct calibrations, factors influencing the measurement process, and on the exact interpretation of the results. The information given enables the research scientist, the analyst and experienced laboratory staff to apply DSC methods successfully and to measure respective properties correctly.