This thesis describes the stand-alone discovery and measurement of the Higgs boson in its decays to two W bosons using the Run-I ATLAS dataset. This is the most precise measurement of gluon-fusion Higgs boson production, and is among the most significant results attained at the LHC. The thesis provides an exceptionally clear exposition on a complicated analysis performed by a large team of researchers. Aspects of the analysis performed by the author are explained in detail; these include new methods for evaluating uncertainties on the jet binning used in the analysis, and for estimating the background due to associated production of a W boson and an off-shell photon. The thesis also describes a measurement of the WW cross section, an essential background to Higgs boson production. The primary motivation of the LHC was to prove or disprove the existence of the Higgs boson. In 2012, CERN announced this discovery and the resultant ATLAS publication contained three decay channels: gg, ZZ, and WW.
This Thesis describes the first measurement of, and constraints on, Higgs boson production in the vector boson fusion mode, where the Higgs decays to b quarks (the most common decay channel), at the LHC. The vector boson fusion mode, in which the Higgs is produced simultaneously with a pair of quark jets, provides an unparalleled opportunity to study the detailed properties of the Higgs, including the possibility of parity and CP violation, as well as its couplings and mass. It thus opens up this new field of study for precision investigation as the LHC increases in energy and intensity, leading the way to this new and exciting arena of precision Higgs research.
Precision measurements of the Higgs boson’s properties are a powerful tool to look for deviations from the predictions of the Standard Model (SM) of particle physics. The 139/fb of proton-proton collision data which have been collected by the ATLAS experiment during Run 2 of the LHC, offer an opportunity to investigate rare Higgs-boson topologies, which are particularly sensitive to new physics scenarios but experimentally difficult to access. Several such measurements, which target Higgs-boson decays to heavy-flavour quarks, as well as their combinations are presented in this thesis. A novel analysis that measures Higgs-boson production in association with a heavy vector boson V (VH, with V=W,Z) at high energies is presented. Dedicated Higgs-boson reconstruction techniques are applied to reconstruct the highly Lorentz-boosted Higgs-boson decays into pairs of bottom quarks. The measurement is subsequently combined with a VH cross-section measurement at low and intermediate pT(V) to provide a differential cross-section measurement in kinematic fiducial volumes over the largest possible pT(V) range. All cross-section measurements agree with the SM predictions within relative uncertainties that range from 30% to 300%. The results are furthermore interpreted as limits on the parameters of a SM effective field theory. Finally, a combination of measurements of Higgs decays to heavy-flavour quarks is used to experimentally determine that the Higgs-boson coupling to charm quarks is weaker than to bottom quarks, as predicted by the SM. The target audience for the thesis are physicists and physics students, in particular those with a background in high energy physics.
This thesis presents a study of the scalar sector in the standard model (SM), as well as various searches for an extended scalar sector in theories beyond the SM (BSM). The first part of the thesis details the search for an SM Higgs boson decaying to taus, and produced by gluon fusion, vector boson fusion, or associated production with a vector boson, leading to evidence for decays of the Higgs boson to taus. In turn, the second part highlights several searches for an extended scalar sector, with scalar boson decays to taus. In all of the analyses presented, at least one scalar boson decays to a pair of taus. The results draw on data collected by the Compact Muon Solenoid (CMS) detector during proton–proton collisions with a center-of-mass energy of 7 or 8 TeV.
The predictions of the Standard Model (SM) of particle physics have been probed with remarkable accuracy, so far. The Large Hadron Collider (LHC) at CERN has significantly contributed to this quest. A remarkable achievement of the ATLAS and CMS experiments at the LHC was the discovery of the Higgs boson in 2012, the last missing piece of the SM. With the increasing amount of proton-proton collisions delivered by the LHC, more precise measurements of the Higgs boson are now possible, while rare processes are accessible as well. A property of the Higgs boson that is of particular importance is its coupling to the top quark, which is expected to be the strongest in the SM due to the high mass of the top quark. Therefore, its precise measurement is a stringent test of the SM. A direct measurement of the top-quark Yukawa coupling can be assessed through the Higgs-boson production in association with a pair of top quarks (ttH). This thesis presents the measurement of the ttH process with a subsequent Higgs-boson decay to a pair of b-quarks (H -> bb), the decay mode with the largest branching ratio. The measurement is performed with data collected by the ATLAS detector, corresponding to an integrated luminosity of 139 fb^-1 at a center-of-mass energy of 13 TeV. Events with one or two charged leptons from the tt decay in the final state are considered to the measurement. The main challenge of the ttH(H -> bb) channel emerges from the large SM backgrounds from the production of top-quark pairs with additional jets (tt+jets). Also the many jets coming from b-hadrons (b-jets) in the final state cause combinatorial ambiguities. Thus, the identification of such jets is decisive in order to determine the signal and reject many background processes. The ttH events are split into exclusive analysis regions, based on the number of leptons, jets, and jets tagged as b-jets, providing regions enhanced in signal, or in the main background components. Specifically in the single-lepton channel, a boosted category is defined by selecting events in which the Higgs boson and possibly also the hadronically decaying top quark are produced with high transverse momentum (pT), with their decay products being collimated in large-radius jets. The single-lepton boosted channel targets events with Higgs-boson candidate pT >= 300 GeV and is the main scope of this thesis. To identify the reconstructed objects with the underlying particles and to maximise the discrimination of the ttH signal from the overwhelming tt+jets background events in the signal-enriched regions, machine-learning algorithms are employed. The background is dominated by a tt process with an additional gluon in the final state which further splits into a pair of b-quarks (tt+bb). Besides, a large number of heavy-flavour jets in the final state is not well modelled, thus many systematic uncertainties have to be considered, decreasing the sensitivity of the measurement. All the defined analysis regions are analysed together in a combined profile likelihood fit to test for the presence of signal. The fit simultaneously determines the event yields for the signal and the most important background component, while constraining the overall background model within the assigned systematic uncertainties. Eventually, the ratio of the measured ttH cross section to the SM expectation in the inclusive cross-section measurement is found to be 0.35 +0.36,-0.34}, corresponding to an observed (expected) significance of 1.0 (2.7) standard deviations. A ttH signal strength larger than the SM prediction is excluded at 95% confidence level. The measurement uncertainty is dominated by systematic uncertainties, mainly regarding the theoretical knowledge of the tt +>= 1b background process. Finally, to further test the SM, the cross-section is measured differentially as a function of the generator-level Higgs-boson pT, taking advantage of the reconstruction of the Higgs-boson kinematics.
In this work, the interaction between the Higgs boson and the top quark is studied with the proton-proton collisions at 13 TeV provided by the LHC at the CMS detector at CERN (Geneva). At the LHC, these particles are produced simultaneously via the associate production of the Higgs boson with one top quark (tH process) or two top quarks (ttH process). Compared to many other possible outcomes of the proton-proton interactions, these processes are very rare, as the top quark and the Higgs boson are the heaviest elementary particles known. Hence, identifying them constitutes a significant experimental challenge. A high particle selection efficiency in the CMS detector is therefore crucial. At the core of this selection stands the Level-1 (L1) trigger system, a system that filters collision events to retain only those with potential interest for physics analysis. The selection of hadronically decaying τ leptons, expected from the Higgs boson decays, is especially demanding due to the large background arising from the QCD interactions. The first part of this thesis presents the optimization of the L1 τ algorithm in Run 2 (2016-2018) and Run 3 (2022-2024) of the LHC. It includes the development of a novel trigger concept for the High-Luminosity LHC, foreseen to start in 2027 and to deliver 5 times the current instantaneous luminosity. To this end, sophisticated algorithms based on machine learning approaches are used, facilitated by the increasingly modern technology and powerful computation of the trigger system. The second part of the work presents the search of the tH and ttH processes with the subsequent decays of the Higgs boson to pairs of τ lepton, W bosons or Z bosons, making use of the data recorded during Run 2. The presence of multiple particles in the final state, along with the low cross section of the processes, makes the search an ideal use case for multivariant discriminants that enhance the selectivity of the signals and reject the overwhelming background contributions. The discriminants presented are built using state-of-the-art machine learning techniques, able to capture the correlations amongst the processes involved, as well as the so-called Matrix Element Method (MEM), which combines the theoretical description of the processes with the detector resolution effects. The level of sophistication of the methods used, along with the unprecedented amount of collision data analyzed, result in the most stringent measurements of the tH and ttH cross sections up to date.
This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry – one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding. The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC–vector boson fusion and gluon–gluon fusion. Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community. This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.
This thesis presents the measurement of the Higgs boson cross section in the diphoton decay channel. The measurement relies on proton-proton collision data at a center-of-mass energy √s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider (LHC). The collected data correspond to the full Run-2 dataset with an integrated luminosity of 139 fb-1. The measured cross sections are used to constrain anomalous Higgs boson interactions in the Effective Field Theory (EFT) framework. The results presented in this thesis represent a reduction by a factor 2 of the different photon and jet energy scale and resolution systematic uncertainties with respect to the previous ATLAS publication. The thesis details the calibration of electron and photon energies in ATLAS, in particular the measurement of the presampler energy scale and the estimation of its systematic uncertainty. This calibration was used to perform a measurement of the Higgs boson mass in the H → γγ and H → 4l channels using the 36 fb−1 dataset.